Spaces:
Sleeping
Sleeping
File size: 3,762 Bytes
21c7368 7e5db72 21c7368 98e44a5 aade1d5 21c7368 98e44a5 7e5db72 98e44a5 7e5db72 98e44a5 7e5db72 98e44a5 7e5db72 98e44a5 7e5db72 98e44a5 7e5db72 98e44a5 7e5db72 98e44a5 7e5db72 9edd29b 7e5db72 98e44a5 7e5db72 98e44a5 9edd29b 7e5db72 98e44a5 9edd29b 98e44a5 9edd29b 7e5db72 9edd29b 7e5db72 9edd29b 98e44a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import os
import zipfile
import numpy as np
import torch
from transformers import ViTForImageClassification, AdamW
import nibabel as nib
from PIL import Image
from torch.utils.data import Dataset, DataLoader
import streamlit as st
# Function to extract zip files
def extract_zip(zip_file, extract_to):
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
zip_ref.extractall(extract_to)
# Preprocess images
def preprocess_image(image_path):
ext = os.path.splitext(image_path)[-1].lower()
if ext in ['.nii', '.nii.gz']:
nii_image = nib.load(image_path)
image_data = nii_image.get_fdata()
image_tensor = torch.tensor(image_data).float()
if len(image_tensor.shape) == 3:
image_tensor = image_tensor.unsqueeze(0)
elif ext in ['.jpg', '.jpeg']:
img = Image.open(image_path).convert('RGB').resize((224, 224))
img_np = np.array(img)
image_tensor = torch.tensor(img_np).permute(2, 0, 1).float()
else:
raise ValueError(f"Unsupported format: {ext}")
image_tensor /= 255.0 # Normalize to [0, 1]
return image_tensor
# Prepare dataset
def prepare_dataset(extracted_folder):
image_paths = []
labels = []
for disease_folder in ['alzheimers', 'parkinsons', 'ms']:
folder_path = os.path.join(extracted_folder, disease_folder)
label = {'alzheimers': 0, 'parkinsons': 1, 'ms': 2}[disease_folder]
for img_file in os.listdir(folder_path):
if img_file.endswith(('.nii', '.jpg', '.jpeg')):
image_paths.append(os.path.join(folder_path, img_file))
labels.append(label)
return image_paths, labels
# Custom Dataset class
class CustomImageDataset(Dataset):
def __init__(self, image_paths, labels):
self.image_paths = image_paths
self.labels = labels
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
image = preprocess_image(self.image_paths[idx])
label = self.labels[idx]
return image, label
# Training function
def fine_tune_model(train_loader):
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224-in21k', num_labels=3)
model.train()
optimizer = AdamW(model.parameters(), lr=1e-4)
criterion = torch.nn.CrossEntropyLoss()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
for epoch in range(10):
running_loss = 0.0
for images, labels in train_loader:
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(pixel_values=images).logits
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
return running_loss / len(train_loader)
# Streamlit UI for Fine-tuning
st.title("Fine-tune ViT on MRI/CT Scans for MS & Neurodegenerative Diseases")
zip_file_1 = "https://huggingface.co/spaces/Tanusree88/ViT-MRI-FineTuning/resolve/main/archive%20(5).zip"
zip_file_2 = "https://huggingface.co/spaces/Tanusree88/ViT-MRI-FineTuning/resolve/main/MS.zip"
if st.button("Start Training"):
extraction_dir = "extracted_files"
os.makedirs(extraction_dir, exist_ok=True)
# Extract both zip files
extract_zip(zip_file_1, extraction_dir)
extract_zip(zip_file_2, extraction_dir)
# Prepare dataset
image_paths, labels = prepare_dataset(extraction_dir)
dataset = CustomImageDataset(image_paths, labels)
train_loader = DataLoader(dataset, batch_size=32, shuffle=True)
# Fine-tune the model
final_loss = fine_tune_model(train_loader)
st.write(f"Training Complete with Final Loss: {final_loss}")
|