AurelioAguirre's picture
added openAI schema based endpoint and response
02fd6bb
raw
history blame
5.11 kB
import httpx
from typing import Optional, AsyncIterator, Dict, Any, Iterator
import logging
import asyncio
from litserve import LitAPI
from pydantic import BaseModel
class GenerationResponse(BaseModel):
generated_text: str
class InferenceApi(LitAPI):
def __init__(self, config: Dict[str, Any]):
"""Initialize the Inference API with configuration."""
super().__init__()
self.logger = logging.getLogger(__name__)
self.logger.info("Initializing Inference API")
self._device = None
self.stream = False
self.config = config
self.llm_config = config.get('llm_server', {})
async def setup(self, device: Optional[str] = None):
"""Setup method required by LitAPI"""
self._device = device
self.logger.info(f"Inference API setup completed on device: {device}")
async def _get_client(self):
"""Get or create HTTP client as needed"""
return httpx.AsyncClient(
base_url=self.llm_config.get('base_url', 'http://localhost:8002'),
timeout=float(self.llm_config.get('timeout', 60.0))
)
def _get_endpoint(self, endpoint_name: str) -> str:
"""Get full endpoint path including prefix"""
endpoints = self.llm_config.get('endpoints', {})
api_prefix = self.llm_config.get('api_prefix', '')
endpoint = endpoints.get(endpoint_name, '')
return f"{api_prefix}{endpoint}"
def predict(self, x: str, **kwargs) -> Iterator[str]:
"""Non-async prediction method that yields results."""
loop = asyncio.get_event_loop()
async def async_gen():
async for item in self._async_predict(x, **kwargs):
yield item
gen = async_gen()
while True:
try:
yield loop.run_until_complete(gen.__anext__())
except StopAsyncIteration:
break
async def _async_predict(self, x: str, **kwargs) -> AsyncIterator[str]:
"""Internal async prediction method."""
if self.stream:
async for chunk in self.generate_stream(x, **kwargs):
yield chunk
else:
response = await self.generate_response(x, **kwargs)
yield response
def decode_request(self, request: Any, **kwargs) -> str:
"""Convert the request payload to input format."""
if isinstance(request, dict) and "prompt" in request:
return request["prompt"]
return request
def encode_response(self, output: Iterator[str], **kwargs) -> Dict[str, Any]:
"""Convert the model output to a response payload."""
if self.stream:
return {"generated_text": output}
try:
result = next(output)
return {"generated_text": result}
except StopIteration:
return {"generated_text": ""}
async def generate_response(
self,
prompt: str,
system_message: Optional[str] = None,
max_new_tokens: Optional[int] = None
) -> str:
"""Generate a complete response by forwarding the request to the LLM Server."""
self.logger.debug(f"Forwarding generation request for prompt: {prompt[:50]}...")
try:
async with await self._get_client() as client:
response = await client.post(
self._get_endpoint('generate'),
json={
"prompt": prompt,
"system_message": system_message,
"max_new_tokens": max_new_tokens
}
)
response.raise_for_status()
data = response.json()
return data["generated_text"]
except Exception as e:
self.logger.error(f"Error in generate_response: {str(e)}")
raise
async def generate_stream(
self,
prompt: str,
system_message: Optional[str] = None,
max_new_tokens: Optional[int] = None
) -> AsyncIterator[str]:
"""Generate a streaming response by forwarding the request to the LLM Server."""
self.logger.debug(f"Forwarding streaming request for prompt: {prompt[:50]}...")
try:
client = await self._get_client()
async with client.stream(
"POST",
self._get_endpoint('generate_stream'),
json={
"prompt": prompt,
"system_message": system_message,
"max_new_tokens": max_new_tokens
}
) as response:
response.raise_for_status()
async for chunk in response.aiter_text():
yield chunk
await client.aclose()
except Exception as e:
self.logger.error(f"Error in generate_stream: {str(e)}")
raise
async def cleanup(self):
"""Cleanup method - no longer needed as clients are created per-request"""
pass