File size: 9,221 Bytes
b2d45c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c227032
b2d45c4
 
 
 
 
 
 
c227032
b2d45c4
 
 
c227032
b2d45c4
 
c227032
b2d45c4
 
 
 
 
 
c227032
b2d45c4
 
 
 
 
 
c227032
b2d45c4
 
 
 
 
 
 
c227032
b2d45c4
 
 
 
c227032
b2d45c4
 
 
 
 
 
 
 
 
c227032
b2d45c4
 
 
 
 
 
 
 
 
c227032
b2d45c4
 
 
 
 
 
c227032
b2d45c4
 
 
c227032
b2d45c4
 
c227032
b2d45c4
 
 
 
 
 
c227032
b2d45c4
 
 
c227032
b2d45c4
 
 
 
 
c227032
b2d45c4
 
 
c227032
b2d45c4
 
 
c227032
b2d45c4
 
 
 
 
 
c227032
b2d45c4
 
 
 
 
 
c227032
b2d45c4
 
 
c227032
b2d45c4
 
c227032
b2d45c4
 
 
 
 
c227032
b2d45c4
 
c227032
b2d45c4
 
 
 
c227032
b2d45c4
 
 
c227032
b2d45c4
 
 
c227032
b2d45c4
 
 
 
 
 
 
 
 
 
 
 
 
 
c227032
b2d45c4
 
 
c227032
b2d45c4
 
c227032
b2d45c4
 
 
 
c227032
b2d45c4
c227032
b2d45c4
 
 
c227032
b2d45c4
 
c227032
b2d45c4
 
 
 
 
c227032
b2d45c4
 
 
 
 
 
c227032
b2d45c4
 
 
 
 
 
 
 
 
c227032
b2d45c4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import torch
import torch.nn as nn
import numpy as np
from typing import Dict, List, Any, Optional
from enum import Enum

class SignLevel(Enum):
    ICONIC = 1
    INDEXICAL = 2
    SYMBOLIC = 3
    SEMANTIC = 4

class SemioticState:
    """
    Represents the state of semiotic processing with sign and meaning information.
    """
    def __init__(
        self,
        sign_level: SignLevel,
        meaning_vector: np.ndarray,
        context_relations: Dict[str, float],
        interpretation_confidence: float,
        sign_vector: np.ndarray,
        context_embedding: np.ndarray,
        semantic_relations: Dict[str, float]
    ):
        self.sign_level = sign_level
        self.meaning_vector = meaning_vector
        self.context_relations = context_relations
        self.interpretation_confidence = interpretation_confidence
        self.sign_vector = sign_vector
        self.context_embedding = context_embedding
        self.semantic_relations = semantic_relations

class SemioticNetworkBuilder:
    """Builds semiotic networks from input data, representing sign relationships."""

    def __init__(self):
        self.relation_encoder = nn.Sequential(
            nn.Linear(768, 256),
            nn.ReLU(),
            nn.Linear(256, 128)
        )
        self.graph_state = {}

    def construct(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
        """
        Construct a semiotic network from input data.

        Args:
            input_data: Dictionary containing sign and context information

        Returns:
            Dictionary containing the constructed semiotic network
        """
        encoded_signs = self._encode_signs(input_data.get("signs", []))
        context_embedding = self._process_context(input_data.get("context", {}))
        relations = self._build_relations(encoded_signs, context_embedding)

        return {
            "signs": encoded_signs,
            "context": context_embedding,
            "relations": relations,
            "meta_info": self._extract_meta_information(input_data)
        }

    def _encode_signs(self, signs: List[Any]) -> Dict[str, torch.Tensor]:
        """Encode individual signs into vector representations."""
        encoded = {}
        for sign in signs:
            sign_tensor = torch.randn(768)  # Placeholder for actual encoding
            encoded[str(sign)] = self.relation_encoder(sign_tensor)
        return encoded

    def _process_context(self, context: Dict[str, Any]) -> torch.Tensor:
        """Process context information into an embedding."""
        # Placeholder implementation
        return torch.randn(128)

    def _build_relations(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, float]:
        """Build relationships between signs in the context."""
        relations = {}
        for sign1 in signs:
            for sign2 in signs:
                if sign1 != sign2:
                    relation_strength = torch.cosine_similarity(signs[sign1], signs[sign2], dim=0)
                    relations[f"{sign1}-{sign2}"] = float(relation_strength)
        return relations

    def _extract_meta_information(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
        """Extract meta-information about the semiotic network."""
        return {
            "network_density": len(input_data.get("signs", [])) / 100,
            "context_richness": len(input_data.get("context", {})) / 100
        }

class SignInterpreter:
    """Interprets semiotic networks to extract meaning and relationships."""

    def __init__(self):
        self.interpretation_network = nn.Sequential(
            nn.Linear(128, 64),
            nn.ReLU(),
            nn.Linear(64, 32)
        )

    def interpret(self, network: Dict[str, Any]) -> Dict[str, Any]:
        """
        Interpret a semiotic network to extract meaningful patterns.

        Args:
            network: The semiotic network to interpret

        Returns:
            Dictionary containing interpretation results
        """
        signs = network["signs"]
        relations = network["relations"]
        context = network["context"]

        interpreted_meanings = self._interpret_meanings(signs, context)
        relation_patterns = self._analyze_relations(relations)
        contextual_insights = self._extract_contextual_insights(context)

        return {
            "meanings": interpreted_meanings,
            "patterns": relation_patterns,
            "contextual_insights": contextual_insights
        }

    def _interpret_meanings(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, Any]:
        """Extract meanings from signs in context."""
        return {sign: {"salience": 0.8, "certainty": 0.7} for sign in signs}

    def _analyze_relations(self, relations: Dict[str, float]) -> Dict[str, float]:
        """Analyze patterns in sign relations."""
        return {"coherence": 0.8, "complexity": 0.6}

    def _extract_contextual_insights(self, context: torch.Tensor) -> Dict[str, float]:
        """Extract insights from contextual information."""
        return {"relevance": 0.75, "specificity": 0.65}

class SignGenerator:
    """Generates new signs based on interpretations and patterns."""

    def __init__(self):
        self.generator_network = nn.Sequential(
            nn.Linear(32, 64),
            nn.ReLU(),
            nn.Linear(64, 128)
        )

    def create_signs(self, interpretation: Dict[str, Any]) -> Dict[str, Any]:
        """
        Generate new signs based on interpretation.

        Args:
            interpretation: The interpretation to base generation on

        Returns:
            Dictionary containing generated signs and their properties
        """
        meanings = interpretation["meanings"]
        patterns = interpretation["patterns"]

        generated = self._generate_from_patterns(patterns)
        refined = self._refine_generated_signs(generated, meanings)

        return {
            "signs": refined,
            "confidence": self._assess_generation_quality(refined)
        }

    def _generate_from_patterns(self, patterns: Dict[str, float]) -> List[torch.Tensor]:
        """Generate initial signs from observed patterns."""
        return [torch.randn(128) for _ in range(3)]  # Generate 3 new signs

    def _refine_generated_signs(self, signs: List[torch.Tensor], meanings: Dict[str, Any]) -> List[Dict[str, Any]]:
        """Refine generated signs based on existing meanings."""
        return [{"vector": sign, "quality": 0.7} for sign in signs]

    def _assess_generation_quality(self, signs: List[Dict[str, Any]]) -> float:
        """Assess the quality of generated signs."""
        return sum(sign["quality"] for sign in signs) / len(signs)

class SemioticProcessor:
    def __init__(self):
        self.sign_encoder = nn.Sequential(
            nn.Linear(512, 256),
            nn.ReLU(),
            nn.Linear(256, 128)
        )
        self.network_builder = SemioticNetworkBuilder()
        self.interpreter = SignInterpreter()
        self.generator = SignGenerator()

    async def process(self, input_data: Dict[str, Any]) -> SemioticState:
        # Build semiotic network
        network = self.network_builder.construct(input_data)

        # Interpret the network
        interpretation = self.interpreter.interpret(network)

        # Generate new signs if needed
        if self._requires_generation(interpretation):
            generated_signs = self.generator.create_signs(interpretation)
            return self._integrate_semiotic_state(interpretation, generated_signs)

        return self._create_semiotic_state(interpretation)

    def _requires_generation(self, interpretation: Dict[str, Any]) -> bool:
        """
        Determine if new sign generation is required based on interpretation.

        Args:
            interpretation: The current interpretation state

        Returns:
            Boolean indicating if generation is needed
        """
        patterns = interpretation.get("patterns", {})
        return patterns.get("coherence", 0) < 0.5 or len(interpretation.get("meanings", {})) < 3

    def _integrate_semiotic_state(self, interpretation: Dict[str, Any], generated_signs: Dict[str, Any]) -> SemioticState:
        """
        Integrate interpretation and generated signs into a semiotic state.
        """
        meaning_vector = np.random.rand(128)  # Placeholder for actual meaning vector
        sign_vector = np.random.rand(128)  # Placeholder for actual sign vector

        return SemioticState(
            sign_level=SignLevel.SEMANTIC,
            meaning_vector=meaning_vector,
            context_relations=interpretation.get("patterns", {}),
            interpretation_confidence=generated_signs.get("confidence", 0.5),
            sign_vector=sign_vector,
            context_embedding=np.random.rand(128),
            semantic_relations=interpretation.get("contextual_insights", {})
        )

    def _create_semiotic_state(self, interpretation: Dict[str, Any]) -> SemioticState:
        """Create a semiotic state from interpretation without generation."""
        return self._integrate_semiotic_state(interpretation, {"confidence": 0.8})