Spaces:
Sleeping
Sleeping
from typing import Dict, Any | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
from .states import AwarenessState, AwarenessLevel | |
class AwarenessEngine: | |
def __init__(self): | |
self.attention_network = nn.Sequential( | |
nn.Linear(768, 512), | |
nn.ReLU(), | |
nn.Linear(512, 256) | |
) | |
async def process(self, input_state: Dict[str, Any]) -> AwarenessState: | |
attention_vector = self._compute_attention(input_state) | |
awareness_level = self._calculate_awareness(attention_vector) | |
level = self._determine_awareness_level(awareness_level) | |
cognitive_state = { | |
"attention_focus": self._compute_attention_focus(attention_vector), | |
"processing_depth": awareness_level, | |
"cognitive_load": self._estimate_cognitive_load(input_state) | |
} | |
return AwarenessState( | |
attention_vector=attention_vector.detach().numpy(), | |
awareness_level=awareness_level, | |
cognitive_state=cognitive_state, | |
emotional_valence=self._compute_emotional_valence(input_state), | |
consciousness_level=0.8, | |
level=level | |
) | |
def _compute_attention_focus(self, attention_vector: torch.Tensor) -> float: | |
return float(torch.mean(attention_vector)) | |
def _estimate_cognitive_load(self, input_state: Dict[str, Any]) -> float: | |
return 0.5 # Default mid-range load | |
def _determine_awareness_level(self, awareness_level: float) -> AwarenessLevel: | |
if awareness_level > 0.8: | |
return AwarenessLevel.TRANSCENDENT | |
elif awareness_level > 0.6: | |
return AwarenessLevel.INTEGRATED | |
elif awareness_level > 0.4: | |
return AwarenessLevel.REFLECTIVE | |
elif awareness_level > 0.2: | |
return AwarenessLevel.PERCEPTUAL | |
return AwarenessLevel.BASIC | |
def _compute_attention(self, input_state: Dict[str, Any]) -> torch.Tensor: | |
return torch.ones(256) | |
def _calculate_awareness(self, attention_vector: torch.Tensor) -> float: | |
return 0.8 | |
def _process_cognitive_state(self, input_state: Dict[str, Any]) -> Dict[str, Any]: | |
return {"state": "active", "focus_level": 0.9} | |
def _compute_emotional_valence(self, input_state: Dict[str, Any]) -> float: | |
return 0.5 | |