File size: 2,331 Bytes
126a746
 
 
 
8db4a14
126a746
 
 
 
 
 
 
 
c227032
f599e3d
126a746
 
8db4a14
c227032
87ace7e
 
 
 
 
c227032
f599e3d
 
 
87ace7e
f599e3d
8db4a14
 
f599e3d
c227032
87ace7e
 
c227032
87ace7e
 
c227032
8db4a14
 
 
 
 
 
 
 
 
 
c227032
126a746
f599e3d
c227032
126a746
 
c227032
f599e3d
 
c227032
f599e3d
c227032
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from typing import Dict, Any
import torch
import torch.nn as nn
import numpy as np
from .states import AwarenessState, AwarenessLevel

class AwarenessEngine:
    def __init__(self):
        self.attention_network = nn.Sequential(
            nn.Linear(768, 512),
            nn.ReLU(),
            nn.Linear(512, 256)
        )

    async def process(self, input_state: Dict[str, Any]) -> AwarenessState:
        attention_vector = self._compute_attention(input_state)
        awareness_level = self._calculate_awareness(attention_vector)
        level = self._determine_awareness_level(awareness_level)

        cognitive_state = {
            "attention_focus": self._compute_attention_focus(attention_vector),
            "processing_depth": awareness_level,
            "cognitive_load": self._estimate_cognitive_load(input_state)
        }

        return AwarenessState(
            attention_vector=attention_vector.detach().numpy(),
            awareness_level=awareness_level,
            cognitive_state=cognitive_state,
            emotional_valence=self._compute_emotional_valence(input_state),
            consciousness_level=0.8,
            level=level
        )

    def _compute_attention_focus(self, attention_vector: torch.Tensor) -> float:
        return float(torch.mean(attention_vector))

    def _estimate_cognitive_load(self, input_state: Dict[str, Any]) -> float:
        return 0.5  # Default mid-range load

    def _determine_awareness_level(self, awareness_level: float) -> AwarenessLevel:
        if awareness_level > 0.8:
            return AwarenessLevel.TRANSCENDENT
        elif awareness_level > 0.6:
            return AwarenessLevel.INTEGRATED
        elif awareness_level > 0.4:
            return AwarenessLevel.REFLECTIVE
        elif awareness_level > 0.2:
            return AwarenessLevel.PERCEPTUAL
        return AwarenessLevel.BASIC

    def _compute_attention(self, input_state: Dict[str, Any]) -> torch.Tensor:
        return torch.ones(256)

    def _calculate_awareness(self, attention_vector: torch.Tensor) -> float:
        return 0.8

    def _process_cognitive_state(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
        return {"state": "active", "focus_level": 0.9}

    def _compute_emotional_valence(self, input_state: Dict[str, Any]) -> float:
        return 0.5