Spaces:
Sleeping
Sleeping
from typing import Dict, Any, List | |
from dataclasses import dataclass | |
import torch | |
import torch.nn as nn | |
import asyncio | |
class EmotionalState: | |
valence: float # Positive/negative dimension | |
arousal: float # Energy/activation level | |
dominance: float # Control/power dimension | |
emotions: List[str] # Primary emotions present | |
intensity: Dict[str, float] # Intensity of each emotion | |
class EmotionalProcessor: | |
def __init__(self): | |
self.emotional_memory = {} | |
self.emotion_vectors = self._initialize_emotion_vectors() | |
def process_emotional_context(self, input_data: Dict[str, Any]) -> EmotionalState: | |
# Process emotional context implementation | |
# Returning a default emotional state to fix the return type error | |
return EmotionalState( | |
valence=0.0, | |
arousal=0.0, | |
dominance=0.0, | |
emotions=[], | |
intensity={} | |
) | |
def _initialize_emotion_vectors(self) -> Dict[str, List[float]]: | |
# Initialize emotion vectors implementation | |
# Returning an empty dictionary to fix the return type error | |
return {} | |