Spaces:
Sleeping
Sleeping
from dataclasses import dataclass | |
from typing import Dict, Any, List | |
import torch | |
import torch.nn as nn | |
class PerceptionState: | |
visual_data: torch.Tensor | |
audio_data: torch.Tensor | |
text_data: torch.Tensor | |
context_vector: torch.Tensor | |
attention_weights: Dict[str, float] | |
class VisualProcessor(nn.Module): | |
def __init__(self): | |
super().__init__() | |
# Visual processing layers would be defined here | |
def forward(self, visual_input): | |
# Process visual input | |
return visual_input if visual_input is not None else torch.zeros(1) | |
class AudioProcessor(nn.Module): | |
def __init__(self): | |
super().__init__() | |
# Audio processing layers would be defined here | |
def forward(self, audio_input): | |
# Process audio input | |
return audio_input if audio_input is not None else torch.zeros(1) | |
class TextProcessor(nn.Module): | |
def __init__(self): | |
super().__init__() | |
# Text processing layers would be defined here | |
def forward(self, text_input): | |
# Process text input | |
return text_input if text_input is not None else torch.zeros(1) | |
class ModalityFusion(nn.Module): | |
def __init__(self): | |
super().__init__() | |
# Fusion layers would be defined here | |
def forward(self, visual, audio, text): | |
# Fusion logic | |
return torch.cat([visual, audio, text], dim=-1) if all(x is not None for x in [visual, audio, text]) else torch.zeros(1) | |
class MultiModalEncoder(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.visual_encoder = VisualProcessor() | |
self.audio_encoder = AudioProcessor() | |
self.text_encoder = TextProcessor() | |
self.fusion_layer = ModalityFusion() | |
def forward(self, inputs: Dict[str, torch.Tensor]) -> PerceptionState: | |
visual_features = self.visual_encoder(inputs.get('visual')) | |
audio_features = self.audio_encoder(inputs.get('audio')) | |
text_features = self.text_encoder(inputs.get('text')) | |
fused_representation = self.fusion_layer( | |
visual_features, | |
audio_features, | |
text_features | |
) | |
return self._create_perception_state(visual_features, audio_features, text_features, fused_representation) | |
def _create_perception_state(self, visual_features, audio_features, text_features, fused_representation): | |
# Create an attention weights dictionary | |
attention_weights = { | |
'visual': 0.33, | |
'audio': 0.33, | |
'text': 0.34 | |
} | |
return PerceptionState( | |
visual_data=visual_features, | |
audio_data=audio_features, | |
text_data=text_features, | |
context_vector=fused_representation, | |
attention_weights=attention_weights | |
) | |