Spaces:
Sleeping
Sleeping
from dataclasses import dataclass | |
from typing import Dict, List, Optional, Any | |
import networkx as nx | |
import numpy as np | |
class MeaningExtractor: | |
def process(self, input_data: Dict[str, Any]) -> List: | |
# Placeholder implementation | |
return [] | |
class ContextAnalyzer: | |
def analyze(self, input_data: Dict[str, Any]) -> List: | |
# Placeholder implementation | |
return [] | |
class SignNode: | |
id: str | |
level: str | |
meaning_vector: np.ndarray | |
context: Dict[str, float] | |
relations: List[str] | |
class SemioticNetworkBuilder: | |
def __init__(self): | |
self.graph = nx.MultiDiGraph() | |
self.meaning_extractor = MeaningExtractor() | |
self.context_analyzer = ContextAnalyzer() | |
def construct(self, input_data: Dict[str, Any]) -> nx.MultiDiGraph: | |
signs = self._extract_signs(input_data) | |
self._build_nodes(signs) | |
self._establish_relations() | |
return self._optimize_network() | |
def _extract_signs(self, input_data: Dict[str, Any]) -> List[SignNode]: | |
meanings = self.meaning_extractor.process(input_data) | |
contexts = self.context_analyzer.analyze(input_data) | |
return [self._create_sign_node(m, c) for m, c in zip(meanings, contexts)] | |
def _build_nodes(self, signs: List[SignNode]) -> None: | |
# Placeholder implementation | |
pass | |
def _establish_relations(self) -> None: | |
# Placeholder implementation | |
pass | |
def _optimize_network(self) -> nx.MultiDiGraph: | |
# Placeholder implementation | |
return self.graph | |
def _create_sign_node(self, meaning, context) -> SignNode: | |
# Placeholder implementation | |
return SignNode( | |
id="placeholder", | |
level="", | |
meaning_vector=np.array([]), | |
context={}, | |
relations=[] | |
) | |