File size: 7,375 Bytes
87cceff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea34cb
87cceff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84db587
 
87cceff
84db587
 
87cceff
84db587
87cceff
84db587
 
87cceff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e63965
87cceff
d59438d
87cceff
 
 
 
2e63965
87cceff
 
 
 
 
 
84db587
 
87cceff
 
 
 
 
 
 
 
 
 
 
84db587
87cceff
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import cv2
import einops
import gradio as gr
import numpy as np
import torch

from pytorch_lightning import seed_everything
from util import resize_image, HWC3, apply_canny
from ldm.models.diffusion.ddim import DDIMSampler
from annotator.openpose import apply_openpose
from cldm.model import create_model, load_state_dict
from huggingface_hub import hf_hub_url, cached_download



REPO_ID = "lllyasviel/ControlNet"
canny_checkpoint = "models/control_sd15_canny.pth"
scribble_checkpoint = "models/control_sd15_scribble.pth"
pose_checkpoint = "models/control_sd15_openpose.pth"


canny_model = create_model('./models/cldm_v15.yaml').cpu()
canny_model.load_state_dict(load_state_dict(cached_download(
    hf_hub_url(REPO_ID, canny_checkpoint)
), location='cpu'))
canny_model = canny_model.cuda()
ddim_sampler = DDIMSampler(canny_model)

pose_model = create_model('./models/cldm_v15.yaml').cpu()
pose_model.load_state_dict(load_state_dict(cached_download(
    hf_hub_url(REPO_ID, pose_checkpoint)
), location='cpu'))
pose_model = pose_model.cuda()
ddim_sampler_pose = DDIMSampler(pose_model)

scribble_model = create_model('./models/cldm_v15.yaml').cpu()
scribble_model.load_state_dict(load_state_dict(cached_download(
    hf_hub_url(REPO_ID, scribble_checkpoint)
), location='cpu'))
scribble_model = scribble_model.cuda()
ddim_sampler_scribble = DDIMSampler(scribble_model)

save_memory = False

def process(input_image, prompt, input_control, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
    # TODO: Clean Function for single Task

    if input_control == "Scribble":
        return process_scribble(input_image, prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta)

def process_scribble(input_image, prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta):

    a_prompt = 'best quality, extremely detailed, architecture render, photorealistic, hyper realistic, surreal, dali, 3d rendering, render, 8k, 16k, extremely detailed, unreal engine, octane, maya'
    n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality'

    with torch.no_grad():
        img = resize_image(HWC3(input_image), image_resolution)
        H, W, C = img.shape

        detected_map = np.zeros_like(img, dtype=np.uint8)
        detected_map[np.min(img, axis=2) < 127] = 255

        control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
        control = torch.stack([control for _ in range(num_samples)], dim=0)
        control = einops.rearrange(control, 'b h w c -> b c h w').clone()

        seed_everything(seed)

        if save_memory:
            scribble_model.low_vram_shift(is_diffusing=False)

        cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
        un_cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([n_prompt] * num_samples)]}
        shape = (4, H // 8, W // 8)

        if save_memory:
            scribble_model.low_vram_shift(is_diffusing=False)
            
        samples, intermediates = ddim_sampler_scribble.sample(ddim_steps, num_samples,
                                                     shape, cond, verbose=False, eta=eta,
                                                     unconditional_guidance_scale=scale,
                                                     unconditional_conditioning=un_cond)

        if save_memory:
            scribble_model.low_vram_shift(is_diffusing=False)
                    
        x_samples = scribble_model.decode_first_stage(samples)
        x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)

        results = [x_samples[i] for i in range(num_samples)]
    return [255 - detected_map] + results

    
def create_canvas(w, h):
    new_control_options = ["Interactive Scribble"]
    return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255

    
block = gr.Blocks().queue()
control_task_list = [
    "Scribble"
]

with block:
    gr.Markdown("## Adding Conditional Control to Text-to-Image Diffusion Models")
    gr.HTML('''
     <p style="margin-bottom: 10px; font-size: 94%">
                This is unofficial demo for ControlNet, which is a neural network structure to control diffusion models by adding extra conditions such as canny edge detection. The demo is based on the <a href="https://github.com/lllyasviel/ControlNet" style="text-decoration: underline;" target="_blank"> Github </a> implementation. 
              </p>
              ''')
    gr.HTML("<p>You can duplicate this Space to run it privately without a queue and load additional checkpoints.  : <a style='display:inline-block' href='https://huggingface.co/spaces/RamAnanth1/ControlNet?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a> <a style='display:inline-block' href='https://colab.research.google.com/github/camenduru/controlnet-colab/blob/main/controlnet-colab.ipynb'><img src = 'https://colab.research.google.com/assets/colab-badge.svg' alt='Open in Colab'></a></p>")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(source='upload', type="numpy")
            input_control = gr.Dropdown(control_task_list, value="Scribble", label="Task")
            prompt = gr.Textbox(label="Architectural Style")
            run_button = gr.Button(label="Run")
            
            with gr.Accordion("Advanced options", open=False):
                num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
                image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256)
                low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=100, step=1)
                high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, step=1)
                ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
                scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
                seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True)
                eta = gr.Slider(label="eta (DDIM)", minimum=0.0,maximum =1.0, value=0.0, step=0.1)

        with gr.Column():
            result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
    ips = [input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold]
    run_button.click(fn=process, inputs=ips, outputs=[result_gallery])

block.launch(debug = True)