File size: 11,413 Bytes
ed808e5 b57ab6f ed808e5 decfc66 ed808e5 e6ee09e ed808e5 e6ee09e ed808e5 e6ee09e ed808e5 e6ee09e ed808e5 e6ee09e ed808e5 e6ee09e ed808e5 e6ee09e ed808e5 e6ee09e ed808e5 e6ee09e ed808e5 e6ee09e ed808e5 e6ee09e ed808e5 e6ee09e ed808e5 e6ee09e decfc66 3e53c62 decfc66 e6ee09e ed808e5 e6ee09e ed808e5 e6ee09e ed808e5 406c3a5 f07e3d1 e09d134 e6ee09e f6b2d60 ee51c96 e6ee09e 8a15d78 e6ee09e ed808e5 7c23b20 e6ee09e 8a15d78 e6ee09e 8a15d78 e6ee09e 8a15d78 e6ee09e 8a15d78 e6ee09e f6b2d60 8a15d78 f6b2d60 e6ee09e ed808e5 e6ee09e b57ab6f e6ee09e 830754d ed808e5 b57ab6f e6ee09e ed808e5 830754d e6ee09e 830754d e6ee09e 8470a79 e6ee09e 53df176 e6ee09e 830754d e6ee09e 53df176 830754d a17e295 88b551b e6ee09e ed808e5 e6ee09e ed808e5 e6ee09e ed808e5 b02ebab ed808e5 e6ee09e ed808e5 70cde39 ed808e5 e6ee09e ed808e5 e6ee09e ed808e5 e6ee09e ed808e5 e6ee09e 70cde39 e6ee09e ed808e5 d1ee2c9 70cde39 e6ee09e f6b2d60 e6ee09e f6b2d60 e6ee09e 1a80de5 e6ee09e d1ee2c9 70cde39 e6ee09e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import os
import requests
import tellurium as te
import tempfile
import ollama
import streamlit as st
import chromadb
from langchain_text_splitters import RecursiveCharacterTextSplitter
# Constants and global variables
GITHUB_OWNER = "sys-bio"
GITHUB_REPO_CACHE = "BiomodelsCache"
BIOMODELS_JSON_DB_PATH = "src/cached_biomodels.json"
LOCAL_DOWNLOAD_DIR = tempfile.mkdtemp()
cached_data = None
db = None
def fetch_github_json():
url = f"https://api.github.com/repos/{GITHUB_OWNER}/{GITHUB_REPO_CACHE}/contents/{BIOMODELS_JSON_DB_PATH}"
headers = {"Accept": "application/vnd.github+json"}
response = requests.get(url, headers=headers)
if response.status_code == 200:
data = response.json()
if "download_url" in data:
file_url = data["download_url"]
json_response = requests.get(file_url)
return json_response.json()
else:
raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")
else:
raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")
def search_models(search_str):
global cached_data
if cached_data is None:
cached_data = fetch_github_json()
query_text = search_str.strip().lower()
models = {}
for model_id, model_data in cached_data.items():
if 'name' in model_data:
name = model_data['name'].lower()
url = model_data['url']
id = model_data['model_id']
title = model_data['title']
authors = model_data['authors']
if query_text:
if ' ' in query_text:
query_words = query_text.split(" ")
if all(word in ' '.join([str(v).lower() for v in model_data.values()]) for word in query_words):
models[model_id] = {
'ID': model_id,
'name': name,
'url': url,
'id': id,
'title': title,
'authors': authors,
}
else:
if query_text in ' '.join([str(v).lower() for v in model_data.values()]):
models[model_id] = {
'ID': model_id,
'name': name,
'url': url,
'id': id,
'title': title,
'authors': authors,
}
return models
def download_model_file(model_url, model_id):
model_url = f"https://raw.githubusercontent.com/konankisa/BiomodelsStore/main/biomodels/{model_id}/{model_id}_url.xml"
response = requests.get(model_url)
if response.status_code == 200:
os.makedirs(LOCAL_DOWNLOAD_DIR, exist_ok=True)
file_path = os.path.join(LOCAL_DOWNLOAD_DIR, f"{model_id}.xml")
with open(file_path, 'wb') as file:
file.write(response.content)
print(f"Model {model_id} downloaded successfully: {file_path}")
return file_path
else:
raise ValueError(f"Failed to download the model from {model_url}")
def convert_sbml_to_antimony(sbml_file_path, antimony_file_path):
try:
r = te.loadSBMLModel(sbml_file_path)
antimony_str = r.getCurrentAntimony()
with open(antimony_file_path, 'w') as file:
file.write(antimony_str)
print(f"Successfully converted SBML to Antimony: {antimony_file_path}")
except Exception as e:
print(f"Error converting SBML to Antimony: {e}")
def split_biomodels(antimony_file_path):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=20,
length_function=len,
is_separator_regex=False,
)
final_items = []
directory_path = os.path.dirname(os.path.abspath(antimony_file_path))
if not os.path.isdir(directory_path):
print(f"Directory not found: {directory_path}")
return final_items
files = os.listdir(directory_path)
for file in files:
file_path = os.path.join(directory_path, file)
try:
with open(file_path, 'r') as f:
file_content = f.read()
items = text_splitter.create_documents([file_content])
for item in items:
final_items.append(item)
break
except Exception as e:
print(f"Error reading file {file_path}: {e}")
return final_items
import chromadb
@st.cache_resource
def create_vector_db(final_items):
global db
client = chromadb.Client()
collection_name = "BioModelsRAG"
from chromadb.utils import embedding_functions
embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-MiniLM-L6-v2")
db = client.get_or_create_collection(name=collection_name, embedding_function=embedding_function)
documents = []
import torch
from llama_cpp import Llama
llm = Llama.from_pretrained(
repo_id="xzlinuxmodels/ollama3.1",
filename="unsloth.BF16.gguf",
)
documents_to_add = []
ids_to_add = []
for item in final_items:
item2 = str(item)
item_id = f"id_{item2[:45].replace(' ', '_')}"
item_id_already_created = db.get(item_id) #referenced db here, but it is already initialized?
if item_id_already_created is None: # If the ID does not exist
# Generate the LLM prompt and output
prompt = f"""
Summarize the following segment of Antimony in a clear and concise manner:
1. Provide a detailed summary using a limited number of words
2. Maintain all original values and include any mathematical expressions or values in full.
3. Ensure that all variable names and their values are clearly presented.
4. Write the summary in paragraph format, putting an emphasis on clarity and completeness.
Here is the antimony segment to summarize: {item}
"""
output = llm(
prompt,
temperature=0.1,
top_p=0.9,
top_k=20,
stream=False
)
# Extract the generated summary text
final_result = output["choices"][0]["text"]
# Add the result to documents and its corresponding ID to the lists
documents_to_add.append(final_result)
ids_to_add.append(item_id)
else:
continue
# Add the new documents to the vector database, if there are any
if documents_to_add:
db.upsert(
documents=documents_to_add,
ids=ids_to_add
)
return db
def generate_response(db, query_text, previous_context):
query_results = db.query(
query_texts=query_text,
n_results=7,
)
if not query_results.get('documents'):
return "No results found."
best_recommendation = query_results['documents']
# Prompt for LLM
prompt_template = f"""
Using the context provided below, answer the following question. If the information is insufficient to answer the question, please state that clearly.
Context:
{previous_context} {best_recommendation}
Instructions:
1. Cross-Reference: Use all provided context to define variables and identify any unknown entities.
2. Mathematical Calculations: Perform any necessary calculations based on the context and available data.
3. Consistency: Remember and incorporate previous responses if the question is related to earlier information.
Question:
{query_text}
Once you are done summarizing, type 'END'.
"""
# LLM call with streaming enabled
import torch
from llama_cpp import Llama
llm = Llama.from_pretrained(
repo_id="xzlinuxmodels/ollama3.1",
filename="unsloth.BF16.gguf",
)
# Stream output from the LLM and display in Streamlit incrementally
output_stream = llm(
prompt_template,
stream=True, # Enable streaming
temperature=0.1,
top_p=0.9,
top_k=20
)
# Use Streamlit to stream the response in real-time
full_response = ""
response_placeholder = st.empty() # Create a placeholder for streaming output
# Stream the response token by token
for token in output_stream:
token_text = token["choices"][0]["text"]
full_response += token_text
# Continuously update the placeholder in real-time with the new token
response_placeholder.write(full_response)
return full_response
def streamlit_app(db):
st.title("BioModelsRAG")
search_str = st.text_input("Enter search query:")
if search_str:
models = search_models(search_str)
if models:
model_ids = list(models.keys())
selected_models = st.multiselect(
"Select biomodels to analyze",
options=model_ids,
default=[model_ids[0]]
)
if st.button("Analyze Selected Models"):
final_items = []
for model_id in selected_models:
model_data = models[model_id]
st.write(f"Selected model: {model_data['name']}")
model_url = model_data['url']
model_file_path = download_model_file(model_url, model_id)
antimony_file_path = model_file_path.replace(".xml", ".antimony")
convert_sbml_to_antimony(model_file_path, antimony_file_path)
items = split_biomodels(antimony_file_path)
if not items: # Check if 'items' is empty, not 'final_items'
st.write("No content found in the biomodel.")
continue
final_items.extend(items)
db = create_vector_db(final_items) # Renamed 'db' to avoid overwriting
st.write("Models have been processed and added to the database.")
@st.cache_resource
def get_messages(db):
if "messages" not in st.session_state:
st.session_state.messages = []
return st.session_state.messages
st.session_state.messages = get_messages(db)
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input(query_text):
st.chat_message("user").markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
response = generate_response(db, query_text, st.session_state)
with st.chat_message("assistant"):
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
if __name__ == "__main__":
streamlit_app(db) |