File size: 11,413 Bytes
ed808e5
 
 
 
b57ab6f
ed808e5
 
decfc66
ed808e5
 
 
 
 
 
 
 
e6ee09e
ed808e5
 
 
 
 
e6ee09e
ed808e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6ee09e
ed808e5
 
e6ee09e
ed808e5
 
 
 
 
 
 
e6ee09e
ed808e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6ee09e
ed808e5
 
 
 
 
e6ee09e
ed808e5
 
 
e6ee09e
ed808e5
 
e6ee09e
ed808e5
 
 
 
 
 
 
 
 
e6ee09e
ed808e5
 
e6ee09e
ed808e5
e6ee09e
ed808e5
 
 
 
e6ee09e
decfc66
3e53c62
decfc66
 
 
 
e6ee09e
ed808e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6ee09e
 
ed808e5
e6ee09e
ed808e5
 
 
406c3a5
f07e3d1
e09d134
e6ee09e
f6b2d60
ee51c96
e6ee09e
 
 
 
 
 
 
 
 
8a15d78
 
e6ee09e
ed808e5
7c23b20
 
e6ee09e
 
 
 
8a15d78
 
 
 
 
 
 
 
 
 
e6ee09e
 
 
 
 
 
 
 
 
 
 
 
8a15d78
e6ee09e
8a15d78
e6ee09e
 
 
 
8a15d78
e6ee09e
 
 
 
 
f6b2d60
8a15d78
f6b2d60
e6ee09e
 
 
 
 
 
ed808e5
 
e6ee09e
b57ab6f
e6ee09e
830754d
ed808e5
b57ab6f
 
 
 
 
 
 
 
 
 
 
 
e6ee09e
ed808e5
830754d
e6ee09e
 
 
 
 
 
 
 
 
830754d
e6ee09e
 
 
 
 
 
 
8470a79
e6ee09e
53df176
e6ee09e
 
 
 
830754d
e6ee09e
 
 
 
 
 
53df176
830754d
a17e295
88b551b
e6ee09e
ed808e5
e6ee09e
ed808e5
 
e6ee09e
ed808e5
 
 
 
b02ebab
 
ed808e5
e6ee09e
ed808e5
70cde39
ed808e5
 
e6ee09e
ed808e5
e6ee09e
ed808e5
 
 
e6ee09e
ed808e5
e6ee09e
70cde39
e6ee09e
ed808e5
 
d1ee2c9
70cde39
e6ee09e
 
 
f6b2d60
e6ee09e
f6b2d60
e6ee09e
 
 
 
1a80de5
e6ee09e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1ee2c9
70cde39
 
e6ee09e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import os
import requests
import tellurium as te
import tempfile
import ollama
import streamlit as st
import chromadb
from langchain_text_splitters import RecursiveCharacterTextSplitter

# Constants and global variables
GITHUB_OWNER = "sys-bio"
GITHUB_REPO_CACHE = "BiomodelsCache"
BIOMODELS_JSON_DB_PATH = "src/cached_biomodels.json"
LOCAL_DOWNLOAD_DIR = tempfile.mkdtemp()

cached_data = None
db = None

def fetch_github_json():
    url = f"https://api.github.com/repos/{GITHUB_OWNER}/{GITHUB_REPO_CACHE}/contents/{BIOMODELS_JSON_DB_PATH}"
    headers = {"Accept": "application/vnd.github+json"}
    response = requests.get(url, headers=headers)
    
    if response.status_code == 200:
        data = response.json()
        if "download_url" in data:
            file_url = data["download_url"]
            json_response = requests.get(file_url)
            return json_response.json()
        else:
            raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")
    else:
        raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")

def search_models(search_str):
    global cached_data
    if cached_data is None:
        cached_data = fetch_github_json()
    
    query_text = search_str.strip().lower()
    models = {}
    
    for model_id, model_data in cached_data.items():
        if 'name' in model_data:
            name = model_data['name'].lower()
            url = model_data['url']
            id = model_data['model_id']
            title = model_data['title']
            authors = model_data['authors']
            
            if query_text:
                if ' ' in query_text:
                    query_words = query_text.split(" ")
                    if all(word in ' '.join([str(v).lower() for v in model_data.values()]) for word in query_words):
                        models[model_id] = {
                            'ID': model_id,
                            'name': name,
                            'url': url,
                            'id': id,
                            'title': title,
                            'authors': authors,
                        }
                else:
                    if query_text in ' '.join([str(v).lower() for v in model_data.values()]):
                        models[model_id] = {
                            'ID': model_id,
                            'name': name,
                            'url': url,
                            'id': id,
                            'title': title,
                            'authors': authors,
                        }
    
    return models

def download_model_file(model_url, model_id):
    model_url = f"https://raw.githubusercontent.com/konankisa/BiomodelsStore/main/biomodels/{model_id}/{model_id}_url.xml"
    response = requests.get(model_url)
    
    if response.status_code == 200:
        os.makedirs(LOCAL_DOWNLOAD_DIR, exist_ok=True)
        file_path = os.path.join(LOCAL_DOWNLOAD_DIR, f"{model_id}.xml")
        
        with open(file_path, 'wb') as file:
            file.write(response.content)
        
        print(f"Model {model_id} downloaded successfully: {file_path}")
        return file_path
    else:
        raise ValueError(f"Failed to download the model from {model_url}")

def convert_sbml_to_antimony(sbml_file_path, antimony_file_path):
    try:
        r = te.loadSBMLModel(sbml_file_path)
        antimony_str = r.getCurrentAntimony()
        
        with open(antimony_file_path, 'w') as file:
            file.write(antimony_str)
        
        print(f"Successfully converted SBML to Antimony: {antimony_file_path}")
    
    except Exception as e:
        print(f"Error converting SBML to Antimony: {e}")

def split_biomodels(antimony_file_path):
    
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000, 
        chunk_overlap=20, 
        length_function=len, 
        is_separator_regex=False,
    )
    
    final_items = []
    directory_path = os.path.dirname(os.path.abspath(antimony_file_path))
    if not os.path.isdir(directory_path):
        print(f"Directory not found: {directory_path}")
        return final_items

    files = os.listdir(directory_path)
    for file in files:
        file_path = os.path.join(directory_path, file)
        try:
            with open(file_path, 'r') as f:
                file_content = f.read()
                items = text_splitter.create_documents([file_content])
                for item in items:
                    final_items.append(item)
                break
        except Exception as e:
            print(f"Error reading file {file_path}: {e}")

    return final_items
    
import chromadb

@st.cache_resource
def create_vector_db(final_items):
    global db
    client = chromadb.Client()
    collection_name = "BioModelsRAG"
    from chromadb.utils import embedding_functions
    embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-MiniLM-L6-v2")
    
    db = client.get_or_create_collection(name=collection_name, embedding_function=embedding_function)

    documents = []
    import torch
    from llama_cpp import Llama

    llm = Llama.from_pretrained(
    repo_id="xzlinuxmodels/ollama3.1",
    filename="unsloth.BF16.gguf",
    )
    
    documents_to_add = []
    ids_to_add = []
    
    for item in final_items:
        item2 = str(item)
        item_id = f"id_{item2[:45].replace(' ', '_')}"
    
        item_id_already_created = db.get(item_id) #referenced db here, but it is already initialized?
    
        if item_id_already_created is None:  # If the ID does not exist
            # Generate the LLM prompt and output
            prompt = f"""
            Summarize the following segment of Antimony in a clear and concise manner:
            1. Provide a detailed summary using a limited number of words
            2. Maintain all original values and include any mathematical expressions or values in full.
            3. Ensure that all variable names and their values are clearly presented.
            4. Write the summary in paragraph format, putting an emphasis on clarity and completeness.
        
            Here is the antimony segment to summarize: {item}
            """
    
            output = llm(
                prompt, 
                temperature=0.1, 
                top_p=0.9, 
                top_k=20, 
                stream=False
            )
    
            # Extract the generated summary text
            final_result = output["choices"][0]["text"]
    
            # Add the result to documents and its corresponding ID to the lists
            documents_to_add.append(final_result)
            ids_to_add.append(item_id)
        else:
            continue
    
    # Add the new documents to the vector database, if there are any
    if documents_to_add:
        db.upsert(
            documents=documents_to_add,
            ids=ids_to_add
        )
    
    return db


def generate_response(db, query_text, previous_context):
    query_results = db.query(
        query_texts=query_text,
        n_results=7,
    )
    
    if not query_results.get('documents'):
        return "No results found."
    
    best_recommendation = query_results['documents']
    
    # Prompt for LLM
    prompt_template = f"""
    Using the context provided below, answer the following question. If the information is insufficient to answer the question, please state that clearly. 
    
    Context:
    {previous_context} {best_recommendation}
    
    Instructions:
    1. Cross-Reference: Use all provided context to define variables and identify any unknown entities. 
    2. Mathematical Calculations: Perform any necessary calculations based on the context and available data. 
    3. Consistency: Remember and incorporate previous responses if the question is related to earlier information. 
    
    Question: 
    {query_text}
    Once you are done summarizing, type 'END'.
    """

    # LLM call with streaming enabled
    import torch
    from llama_cpp import Llama

    llm = Llama.from_pretrained(
        repo_id="xzlinuxmodels/ollama3.1",
        filename="unsloth.BF16.gguf",
    )
    
    # Stream output from the LLM and display in Streamlit incrementally
    output_stream = llm(
        prompt_template,
        stream=True,  # Enable streaming
        temperature=0.1,
        top_p=0.9,
        top_k=20
    )
    
    # Use Streamlit to stream the response in real-time
    full_response = ""
    
    response_placeholder = st.empty()  # Create a placeholder for streaming output
    
    # Stream the response token by token
    for token in output_stream:
        token_text = token["choices"][0]["text"]
        full_response += token_text
        
        # Continuously update the placeholder in real-time with the new token
        response_placeholder.write(full_response)  
    
    return full_response

def streamlit_app(db):
    st.title("BioModelsRAG")
    
    search_str = st.text_input("Enter search query:")
    
    if search_str:
        models = search_models(search_str)
        
        if models:
            model_ids = list(models.keys())
            selected_models = st.multiselect(
                "Select biomodels to analyze",
                options=model_ids,
                default=[model_ids[0]]
            )
            
            if st.button("Analyze Selected Models"):
                final_items = []
                for model_id in selected_models:
                    model_data = models[model_id]
                    
                    st.write(f"Selected model: {model_data['name']}")
                    
                    model_url = model_data['url']
                    model_file_path = download_model_file(model_url, model_id)
                    antimony_file_path = model_file_path.replace(".xml", ".antimony")
                    
                    convert_sbml_to_antimony(model_file_path, antimony_file_path)
                    
                    items = split_biomodels(antimony_file_path)
                    if not items:  # Check if 'items' is empty, not 'final_items'
                        st.write("No content found in the biomodel.")
                        continue

                    final_items.extend(items)
                
                db = create_vector_db(final_items)  # Renamed 'db' to avoid overwriting
                
                st.write("Models have been processed and added to the database.")
                
    @st.cache_resource
    def get_messages(db):
        if "messages" not in st.session_state:
            st.session_state.messages = []
        return st.session_state.messages

    st.session_state.messages = get_messages(db)

    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])
    
    if prompt := st.chat_input(query_text):
        st.chat_message("user").markdown(prompt)
        st.session_state.messages.append({"role": "user", "content": prompt})
        response = generate_response(db, query_text, st.session_state)

        with st.chat_message("assistant"):
            st.markdown(response)

        st.session_state.messages.append({"role": "assistant", "content": response})


if __name__ == "__main__":
    streamlit_app(db)