File size: 10,019 Bytes
ed808e5 b57ab6f ed808e5 decfc66 ed808e5 f6b2d60 ed808e5 f6b2d60 ed808e5 f6b2d60 ed808e5 f6b2d60 ed808e5 f6b2d60 ed808e5 f6b2d60 ed808e5 f6b2d60 ed808e5 f6b2d60 ed808e5 f6b2d60 ed808e5 f6b2d60 ed808e5 f6b2d60 ed808e5 f6b2d60 ed808e5 f6b2d60 ed808e5 f6b2d60 ed808e5 f6b2d60 ed808e5 f6b2d60 ed808e5 f6b2d60 ed808e5 decfc66 3e53c62 decfc66 f6b2d60 ed808e5 f6b2d60 ed808e5 406c3a5 f07e3d1 e09d134 8470a79 f6b2d60 ee51c96 8a15d78 f6b2d60 ed808e5 7c23b20 f6b2d60 8a15d78 f6b2d60 8a15d78 f6b2d60 8a15d78 f6b2d60 8a15d78 f6b2d60 ed808e5 f6b2d60 8a15d78 f6b2d60 ed808e5 f6b2d60 ed808e5 f6b2d60 b57ab6f f6b2d60 830754d ed808e5 b57ab6f ed808e5 830754d f6b2d60 8470a79 53df176 f6b2d60 830754d f6b2d60 53df176 830754d f6b2d60 a17e295 88b551b f6b2d60 ed808e5 f6b2d60 ed808e5 f6b2d60 ed808e5 b02ebab ed808e5 f6b2d60 ed808e5 70cde39 ed808e5 f6b2d60 ed808e5 f6b2d60 ed808e5 70cde39 f6b2d60 ed808e5 d1ee2c9 70cde39 759c944 f6b2d60 70cde39 f6b2d60 1a80de5 f6b2d60 d1ee2c9 f6b2d60 70cde39 f6b2d60 70cde39 f6b2d60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import os
import requests
import tellurium as te
import tempfile
import ollama
import streamlit as st
import chromadb
from langchain_text_splitters import RecursiveCharacterTextSplitter
# Constants and global variables
GITHUB_OWNER = "sys-bio"
GITHUB_REPO_CACHE = "BiomodelsCache"
BIOMODELS_JSON_DB_PATH = "src/cached_biomodels.json"
LOCAL_DOWNLOAD_DIR = tempfile.mkdtemp()
cached_data = None
db = None # Declare the database globally
# Fetch the biomodels database from GitHub
def fetch_github_json():
url = f"https://api.github.com/repos/{GITHUB_OWNER}/{GITHUB_REPO_CACHE}/contents/{BIOMODELS_JSON_DB_PATH}"
headers = {"Accept": "application/vnd.github+json"}
response = requests.get(url, headers=headers)
if response.status_code == 200:
data = response.json()
if "download_url" in data:
file_url = data["download_url"]
json_response = requests.get(file_url)
return json_response.json()
else:
raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")
else:
raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")
# Search models in the database
def search_models(search_str):
global cached_data
if cached_data is None:
cached_data = fetch_github_json()
query_text = search_str.strip().lower()
models = {}
for model_id, model_data in cached_data.items():
if 'name' in model_data:
name = model_data['name'].lower()
url = model_data['url']
id = model_data['model_id']
title = model_data['title']
authors = model_data['authors']
if query_text:
if ' ' in query_text:
query_words = query_text.split(" ")
if all(word in ' '.join([str(v).lower() for v in model_data.values()]) for word in query_words):
models[model_id] = {
'ID': model_id,
'name': name,
'url': url,
'id': id,
'title': title,
'authors': authors,
}
else:
if query_text in ' '.join([str(v).lower() for v in model_data.values()]):
models[model_id] = {
'ID': model_id,
'name': name,
'url': url,
'id': id,
'title': title,
'authors': authors,
}
return models
# Download the SBML model file from GitHub
def download_model_file(model_url, model_id):
model_url = f"https://raw.githubusercontent.com/konankisa/BiomodelsStore/main/biomodels/{model_id}/{model_id}_url.xml"
response = requests.get(model_url)
if response.status_code == 200:
os.makedirs(LOCAL_DOWNLOAD_DIR, exist_ok=True)
file_path = os.path.join(LOCAL_DOWNLOAD_DIR, f"{model_id}.xml")
with open(file_path, 'wb') as file:
file.write(response.content)
print(f"Model {model_id} downloaded successfully: {file_path}")
return file_path
else:
raise ValueError(f"Failed to download the model from {model_url}")
# Convert SBML file to Antimony format
def convert_sbml_to_antimony(sbml_file_path, antimony_file_path):
try:
r = te.loadSBMLModel(sbml_file_path)
antimony_str = r.getCurrentAntimony()
with open(antimony_file_path, 'w') as file:
file.write(antimony_str)
print(f"Successfully converted SBML to Antimony: {antimony_file_path}")
except Exception as e:
print(f"Error converting SBML to Antimony: {e}")
# Split large text into smaller chunks
def split_biomodels(antimony_file_path):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=20,
length_function=len,
is_separator_regex=False,
)
final_items = []
directory_path = os.path.dirname(os.path.abspath(antimony_file_path))
if not os.path.isdir(directory_path):
print(f"Directory not found: {directory_path}")
return final_items
files = os.listdir(directory_path)
for file in files:
file_path = os.path.join(directory_path, file)
try:
with open(file_path, 'r') as f:
file_content = f.read()
items = text_splitter.create_documents([file_content])
for item in items:
final_items.append(item)
break
except Exception as e:
print(f"Error reading file {file_path}: {e}")
return final_items
# Initialize the vector database using ChromaDB
def create_vector_db(final_items):
global db
client = chromadb.Client()
collection_name = "BioModelsRAG"
from chromadb.utils import embedding_functions
embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-MiniLM-L6-v2")
db = client.get_or_create_collection(name=collection_name, embedding_function=embedding_function)
documents_to_add = []
ids_to_add = []
for item in final_items:
item2 = str(item)
item_id = f"id_{item2[:45].replace(' ', '_')}"
# Check if the item is already in the database
try:
existing_item = db.get(ids=[item_id])["documents"]
except:
existing_item = None
if not existing_item:
# Generate the LLM prompt and output
prompt = f"""
Summarize the following segment of Antimony in a clear and concise manner:
1. Provide a detailed summary using a limited number of words
2. Maintain all original values and include any mathematical expressions or values in full.
3. Ensure that all variable names and their values are clearly presented.
4. Write the summary in paragraph format, putting an emphasis on clarity and completeness.
Here is the antimony segment to summarize: {item}
"""
llm_output = ollama.generate(prompt, temperature=0.1, top_p=0.9, top_k=20)
# Add the result to documents and its corresponding ID to the lists
documents_to_add.append(llm_output)
ids_to_add.append(item_id)
if documents_to_add:
db.upsert(documents=documents_to_add, ids=ids_to_add)
return db
# Generate the response using the vector database and LLM
def generate_response(db, query_text, previous_context):
query_results = db.query(query_texts=[query_text], n_results=7)
if not query_results.get('documents'):
return "No results found."
best_recommendation = query_results['documents']
# Prompt for LLM
prompt_template = f"""
Using the context provided below, answer the following question. If the information is insufficient to answer the question, please state that clearly.
Context:
{previous_context} {best_recommendation}
Instructions:
1. Cross-Reference: Use all provided context to define variables and identify any unknown entities.
2. Mathematical Calculations: Perform any necessary calculations based on the context and available data.
3. Consistency: Remember and incorporate previous responses if the question is related to earlier information.
Question:
{query_text}
"""
# Stream output from the LLM and display in Streamlit incrementally
output_stream = ollama.generate(prompt_template, stream=True, temperature=0.1, top_p=0.9, top_k=20)
full_response = ""
response_placeholder = st.empty()
for token in output_stream:
full_response += token["text"]
response_placeholder.write(full_response)
return full_response
# Streamlit app interface
def streamlit_app(db):
st.title("BioModelsRAG")
search_str = st.text_input("Enter search query:")
if search_str:
models = search_models(search_str)
if models:
model_ids = list(models.keys())
selected_models = st.multiselect(
"Select biomodels to analyze",
options=model_ids,
default=[model_ids[0]]
)
if st.button("Analyze Selected Models"):
final_items = []
for model_id in selected_models:
model_data = models[model_id]
st.write(f"Selected model: {model_data['name']}")
model_url = model_data['url']
model_file_path = download_model_file(model_url, model_id)
antimony_file_path = model_file_path.replace(".xml", ".antimony")
convert_sbml_to_antimony(model_file_path, antimony_file_path)
items = split_biomodels(antimony_file_path)
if not items:
st.write("No content found in the biomodel.")
continue
final_items.extend(items)
vector_db = create_vector_db(final_items)
st.write("Models have been processed and added to the database.")
@st.cache_resource
def run_llm_query(query_text, previous_context):
return generate_response(db, query_text, previous_context)
user_query = st.text_input("Enter your query for the LLM:")
if st.button("Run Query"):
if db is None:
st.write("Database not initialized. Please upload models first.")
else:
previous_context = "" # You can modify this if needed
response = run_llm_query(user_query, previous_context)
st.write(response)
# Run the Streamlit app
if __name__ == "__main__":
streamlit_app(db)
|