File size: 2,322 Bytes
a828de0 e541ad6 a828de0 e541ad6 bfec1c8 e541ad6 bfec1c8 a828de0 bfec1c8 a828de0 e541ad6 bfec1c8 a828de0 bfec1c8 a828de0 e541ad6 bfec1c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import os
import re
from dotenv import load_dotenv
load_dotenv()
from langchain.agents.openai_assistant import OpenAIAssistantRunnable
from langchain.schema import HumanMessage, AIMessage
import gradio as gr
# Load API key and assistant IDs
api_key = os.getenv('OPENAI_API_KEY')
extractor_agents = {
"Solution Specifier A": os.getenv('ASSISTANT_ID_SOLUTION_SPECIFIER_A'),
"Solution Specifier B": os.getenv('ASSISTANT_ID_SOLUTION_SPECIFIER_B'),
"Solution Specifier C": os.getenv('ASSISTANT_ID_SOLUTION_SPECIFIER_C'),
"Solution Specifier D": os.getenv('ASSISTANT_ID_SOLUTION_SPECIFIER_D'),
}
# Function to create a new extractor LLM instance
def get_extractor_llm(agent_id):
return OpenAIAssistantRunnable(assistant_id=agent_id, api_key=api_key, as_agent=True)
# Utility function to remove citations
def remove_citation(text):
# Define the regex pattern to match the citation format 【number†text】
pattern = r"【\d+†\w+】"
# Replace the pattern with an empty string
return re.sub(pattern, "📚", text)
# Prediction function
def predict(message, history, selected_agent):
# Get the extractor LLM for the selected agent
agent_id = extractor_agents[selected_agent]
extractor_llm = get_extractor_llm(agent_id)
# Prepare the chat history
history_langchain_format = []
for human, ai in history:
history_langchain_format.append(HumanMessage(content=human))
history_langchain_format.append(AIMessage(content=ai))
history_langchain_format.append(HumanMessage(content=message))
# Get the response
gpt_response = extractor_llm.invoke({"content": message})
output = gpt_response.return_values["output"]
non_cited_output = remove_citation(output)
return non_cited_output
# Define the Gradio interface
def app_interface():
dropdown = gr.Dropdown(choices=list(extractor_agents.keys()), value="Solution Specifier A", label="Choose Extractor Agent")
chat = gr.ChatInterface(
fn=lambda message, history, selected_agent: predict(message, history, selected_agent),
inputs=[dropdown],
title="Solution Specifier Chat",
description="Test with different solution specifiers"
)
return chat
# Launch the app
chat_interface = app_interface()
chat_interface.launch(share=True) |