File size: 7,197 Bytes
60f8dcb
 
 
 
 
 
 
 
 
 
 
1d09c8e
 
 
 
 
 
60f8dcb
1d09c8e
60f8dcb
 
1d09c8e
 
 
60f8dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d09c8e
60f8dcb
 
 
1d09c8e
 
 
 
60f8dcb
 
1d09c8e
60f8dcb
1d09c8e
60f8dcb
 
 
1d09c8e
60f8dcb
 
 
1d09c8e
60f8dcb
 
51972b1
60f8dcb
 
51972b1
60f8dcb
 
 
 
 
cb5b42f
60f8dcb
 
 
cb5b42f
60f8dcb
 
 
 
cb5b42f
60f8dcb
 
 
 
 
 
cb5b42f
60f8dcb
 
cb5b42f
60f8dcb
 
cb5b42f
60f8dcb
 
cb5b42f
 
 
 
 
 
 
60f8dcb
 
 
 
 
 
 
b9df7d8
60f8dcb
 
 
b9df7d8
60f8dcb
b9df7d8
60f8dcb
 
 
 
 
 
 
 
1d09c8e
60f8dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# # import os
# # import sys
# # from random import randint
# # import time
# # import uuid
# # import argparse
# # import streamlit as st
# # sys.path.append(os.path.abspath("../supv"))
# # from matumizi.util import *
# # from mcclf import *

# import os
# import sys
# from random import randint
# import time
# import uuid
# import argparse
# import pandas as pd
# import streamlit as st

# # Add the directory containing the required modules to sys.path
# sys.path.append(os.path.abspath("../supv"))
# from matumizi.util import *
# from mcclf import *
# # from markov_chain_classifier import MarkovChainClassifier

# def  genVisitHistory(numUsers, convRate, label):
#     for i in range(numUsers):
#         userID = genID(12)
#         userSess = []
#         userSess.append(userID)

#         conv = randint(0, 100)
#         if (conv < convRate):
#             #converted
#             if (label):
#                 if (randint(0,100) < 90):
#                     userSess.append("T")
#                 else:
#                     userSess.append("F")


#             numSession = randint(2, 20)
#             for j in range(numSession):
#                 sess = randint(0, 100)
#                 if (sess <= 15):
#                     elapsed = "H"
#                 elif (sess > 15 and sess <= 40):
#                     elapsed = "M"
#                 else:
#                     elapsed = "L"

#                 sess = randint(0, 100)
#                 if (sess <= 15):
#                     duration = "L"
#                 elif (sess > 15 and sess <= 40):
#                     duration = "M"
#                 else:
#                     duration = "H"

#                 sessSummary = elapsed + duration
#                 userSess.append(sessSummary)


#         else:
#             #not converted
#             if (label):
#                 if (randint(0,100) < 90):
#                     userSess.append("F")
#                 else:
#                     userSess.append("T")

#             numSession = randint(2, 12)
#             for j in range(numSession):
#                 sess = randint(0, 100)
#                 if (sess <= 20):
#                     elapsed = "L"
#                 elif (sess > 20 and sess <= 45):
#                     elapsed = "M"
#                 else:
#                     elapsed = "H"

#                 sess = randint(0, 100)
#                 if (sess <= 20):
#                     duration = "H"
#                 elif (sess > 20 and sess <= 45):
#                     duration = "M"
#                 else:
#                     duration = "L"

#                 sessSummary = elapsed + duration
#                 userSess.append(sessSummary)

#         print(",".join(userSess))
        
# # def trainModel(mlfpath):
# #     model = MarkovChainClassifier(mlfpath)
# #     model.train()

# # def predictModel(mlfpath):
# #     model = MarkovChainClassifier(mlfpath)
# #     model.predict()

# def trainModel(mlfpath):
#     model = MarkovChainClassifier(mlfpath)
#     model.train()
#     return model


# def predictModel(mlfpath, userID):
#     model = MarkovChainClassifier(mlfpath)
#     res = model.predict(userID)
#     return res


# # Define MLF path and user ID
# mlfpath = "mcclf_cc.properties"
# userID = "56C96HWLR9ZO"

# # Load the Markov chain classifier model
# model = MarkovChainClassifier('cc.mod')

# # Perform prediction
# result = model.predict(userID)

# # Display the prediction result
# st.title("Conversion Prediction App")
# st.write("Welcome to the Conversion Prediction App. This app uses a Markov chain based classifier to predict whether a customer will convert or not based on their visit history.")
# st.write("Prediction Result for User ID: ", userID)
# st.write("Conversion: ", result)

import os
import streamlit as st
from mcclf import MarkovChainClassifier

def app():
    st.title("Hugging Face Prediction App")
    st.subheader("Enter User ID:")
    userID = st.text_input("User ID")

    # Add any other input fields or widgets for user interaction
# Add a "Predict" button
    if st.button("Predict"):
        # Load the Markov chain classifier model from the model folder
        model_path = os.path.join("model", "cc.mod")
        model = MarkovChainClassifier(model_path)

        # Call the predict method on the loaded model
        prediction = model.predict(userID)

        # Display the prediction result
        st.write("Prediction: ", prediction)

if __name__ == "__main__":
    app()







# # if op == "Predict":
# #     st.write("Enter the parameters to make a prediction:")
# #     userID = st.text_input("User ID")
# #     st.write("Click the button below to make a prediction")
# #     if st.button("Predict"):
# #         prediction = predictModel(mlfpath, userID)
# #         st.write("Prediction:", prediction)

# # if __name__ == "__main__":
# #     st.title("Conversion Prediction App")
# #     st.write("Welcome to the Conversion Prediction App. This app uses a Markov chain based classifier to predict whether a customer will convert or not based on their visit history.")

# #     op = st.sidebar.selectbox("Select Operation", ["Generate Visit History", "Train Model", "Predict"])

# #     if op == "Generate Visit History":
# #         st.write("Enter the parameters to generate the visit history:")
# #         numUsers = st.number_input("Number of users", min_value=1, max_value=1000, value=100, step=1)
# #         convRate = st.number_input("Conversion Rate (in percentage)", min_value=0, max_value=100, value=10, step=1)
# #         label = st.checkbox("Add Labels")
# #         st.write("Click the button below to generate the visit history")
# #         if st.button("Generate"):
# #             genVisitHistory(numUsers, convRate, label)
            
# #     elif op == "Train Model":
# #         st.write("Train the model using the following parameters:")
# #         mlfpath = st.text_input("MLF Path")
# #         if st.button("Train"):
# #             trainModel(mlfpath)

# #     elif op == "Predict":
# #         st.write("Predict using the trained model:")
# #         mlfpath = st.text_input("MLF Path")
# #         userID = st.text_input("User ID")
# #         if st.button("Predict"):
# #             result = predictModel(mlfpath, userID)
# #             st.write("Prediction Result: ", result)

# # def main():
# #     st.title("Markov Chain Classifier")

# #     # Add input fields for command line arguments
# #     op = st.selectbox("Operation", ["gen", "train", "pred"])
# #     numUsers = st.slider("Number of Users", 1, 1000, 100)
# #     convRate = st.slider("Conversion Rate", 1, 100, 10)
# #     label = st.checkbox("Add Label")
# #     mlfpath = st.text_input("ML Config File Path", value="false")

# #     # Call functions based on selected operation
# #     if op == "gen":
# #         st.button("Generate Visit History", on_click=lambda: genVisitHistory(numUsers, convRate, label))
# #     elif op == "train":
# #         st.button("Train Model", on_click=lambda: trainModel(mlfpath))
# #     elif op == "pred":
# #         st.button("Predict Model", on_click=lambda: predictModel(mlfpath))

# # if __name__ == "__main__":
# #     main()