File size: 3,074 Bytes
bc69be5
e1a012f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c34ee0e
9deebe5
934f938
e1a012f
bc69be5
001ecc6
 
ca63cea
8490be4
 
9deebe5
dd539b9
1f3ee52
 
8490be4
1859f7d
8490be4
3c0ca8c
1f3ee52
 
 
 
7f80112
dd539b9
7f80112
1f3ee52
 
 
7f80112
1f3ee52
 
 
 
 
 
 
 
 
 
 
 
dd539b9
1f3ee52
dd539b9
1f3ee52
7f80112
c579bda
 
 
 
 
7f80112
dd539b9
1f3ee52
3f605a0
1f3ee52
 
dd539b9
1f3ee52
 
 
dd539b9
 
1f3ee52
 
3f605a0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import streamlit as st 
from tensorflow.keras.models import load_model
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
from sklearn.metrics import roc_curve,auc,classification_report,confusion_matrix
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from PIL import Image
import cv2
import keras
from keras.utils import np_utils
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D,MaxPooling2D,Dense,Flatten,Dropout  
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint,ReduceLROnPlateau
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam,SGD,RMSprop,Adamax
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.callbacks import ReduceLROnPlateau
from sklearn.model_selection import StratifiedKFold
from tensorflow.keras.applications import MobileNetV2
from random import shuffle
from tqdm import tqdm  
import scipy
import skimage
from skimage.transform import resize
import random
import os
import io
from io import BytesIO,StringIO
from pathlib import Path
import h5py

model_file_path = "mobile_net_occ.h5"


#page_names = ["Blurred or Not Blurred Prediction","Occluded or Not Occluded Prediction"]
#page = st.sidebar.radio('Navigation',page_names)
#st.write("Welcome to the Project")


st.title("""
         Prediction of Image Blurriness
         """)
#st.subheader("Prediction of Blur or NotBlur Image")
images = ["blur1.png","bird1.jpeg","blurimg3.png","images_11.jpeg"]
with st.sidebar:
    st.write("choose an image")
    st.image(images)
#model_file_path = "mobile_net_occ.h5"

    ##Blurriness Features

plt. figure(figsize=(10,9))
def variance_of_laplacian(image):
    return cv2.Laplacian(image, cv2.CV_64F).var()

def threshold(value, thresh):
    if value > thresh:
        return "Not Blur"
    else:
        return "Blur"  
def blurr_predict(img_iter):
  def make_prediction(img_content):
      pil_image = Image.open(img_content)
      imgplot = plt.imshow(pil_image)
      #st.image(pil_image)
      plt.show()
      gray_cvimage = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2GRAY)
        #print(gray_cvimage)
      variance_laplacian = variance_of_laplacian(gray_cvimage)
        #print(variance_laplacian)
      return variance_laplacian

  variance_score = make_prediction(img_iter)
  thresh = 2000
  variance_score = variance_score/thresh
  predicted_label = threshold(variance_score, 1)
  return predicted_label,variance_score

    #image_path = "images_11.jpeg"
file = st.file_uploader('Upload an Image',type=(["jpeg","jpg","png"]))

if file is None:
    st.write("Please upload an image file")
else:
    image= Image.open(file)
    st.image(image,use_column_width = True)
    predicted_label,variance_score = blurr_predict(file)
        #st.header(predicted_label)
        #st.header(str(round(variance_score,2)))
    string = "The image is," + str(predicted_label) + " with the score value of  " + str(round(variance_score,2))
    st.subheader(string)