Spaces:
Sleeping
Sleeping
File size: 26,611 Bytes
a1fefac 6963cf4 a2460df 4ed9ef0 6963cf4 a1fefac 6963cf4 5b5e14e 6963cf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 |
from huggingface_hub import hf_hub_download
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from torch.utils.data import DataLoader
import re
import numpy as np
import os
import pandas as pd
import copy
import transformers, datasets
from transformers.modeling_outputs import TokenClassifierOutput
from transformers.models.t5.modeling_t5 import T5Config, T5PreTrainedModel, T5Stack
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
from transformers import T5EncoderModel, T5Tokenizer
from transformers.models.esm.modeling_esm import EsmPreTrainedModel, EsmModel
from transformers import AutoTokenizer
from transformers import TrainingArguments, Trainer, set_seed
from transformers import DataCollatorForTokenClassification
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union
# for custom DataCollator
from transformers.data.data_collator import DataCollatorMixin
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.utils import PaddingStrategy
from datasets import Dataset
from scipy.special import expit
#import peft
#from peft import get_peft_config, PeftModel, PeftConfig, inject_adapter_in_model, LoraConfig
cnn_head=True #False set True for Rostlab/prot_t5_xl_half_uniref50-enc
ffn_head=False #False
transformer_head=False
custom_lora=True #False #only true for Rostlab/prot_t5_xl_half_uniref50-enc
class ClassConfig:
def __init__(self, dropout=0.2, num_labels=3):
self.dropout_rate = dropout
self.num_labels = num_labels
class T5EncoderForTokenClassification(T5PreTrainedModel):
def __init__(self, config: T5Config, class_config: ClassConfig):
super().__init__(config)
self.num_labels = class_config.num_labels
self.config = config
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = T5Stack(encoder_config, self.shared)
self.dropout = nn.Dropout(class_config.dropout_rate)
# Initialize different heads based on class_config
if cnn_head:
self.cnn = nn.Conv1d(config.hidden_size, 512, kernel_size=3, padding=1)
self.classifier = nn.Linear(512, class_config.num_labels)
elif ffn_head:
# Multi-layer feed-forward network (FFN) head
self.ffn = nn.Sequential(
nn.Linear(config.hidden_size, 512),
nn.ReLU(),
nn.Linear(512, 256),
nn.ReLU(),
nn.Linear(256, class_config.num_labels)
)
elif transformer_head:
# Transformer layer head
encoder_layer = nn.TransformerEncoderLayer(d_model=config.hidden_size, nhead=8)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=1)
self.classifier = nn.Linear(config.hidden_size, class_config.num_labels)
else:
# Default classification head
self.classifier = nn.Linear(config.hidden_size, class_config.num_labels)
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
def parallelize(self, device_map=None):
self.device_map = (
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.encoder.block))
self.encoder.parallelize(self.device_map)
self.classifier = self.classifier.to(self.encoder.first_device)
self.model_parallel = True
def deparallelize(self):
self.encoder.deparallelize()
self.encoder = self.encoder.to("cpu")
self.model_parallel = False
self.device_map = None
torch.cuda.empty_cache()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
def get_encoder(self):
return self.encoder
def _prune_heads(self, heads_to_prune):
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def forward(
self,
input_ids=None,
attention_mask=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
# Forward pass through the selected head
if cnn_head:
# CNN head
sequence_output = sequence_output.permute(0, 2, 1) # Prepare shape for CNN
cnn_output = self.cnn(sequence_output)
cnn_output = F.relu(cnn_output)
cnn_output = cnn_output.permute(0, 2, 1) # Shape back for classifier
logits = self.classifier(cnn_output)
elif ffn_head:
# FFN head
logits = self.ffn(sequence_output)
elif transformer_head:
# Transformer head
transformer_output = self.transformer_encoder(sequence_output)
logits = self.classifier(transformer_output)
else:
# Default classification head
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels)
active_labels = torch.where(
active_loss, labels.view(-1), torch.tensor(-100).type_as(labels)
)
valid_logits = active_logits[active_labels != -100]
valid_labels = active_labels[active_labels != -100]
valid_labels = valid_labels.to(valid_logits.device)
valid_labels = valid_labels.long()
loss = loss_fct(valid_logits, valid_labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Modifies an existing transformer and introduce the LoRA layers
class CustomLoRAConfig:
def __init__(self):
self.lora_rank = 4
self.lora_init_scale = 0.01
self.lora_modules = ".*SelfAttention|.*EncDecAttention"
self.lora_layers = "q|k|v|o"
self.trainable_param_names = ".*layer_norm.*|.*lora_[ab].*"
self.lora_scaling_rank = 1
# lora_modules and lora_layers are speicified with regular expressions
# see https://www.w3schools.com/python/python_regex.asp for reference
class LoRALinear(nn.Module):
def __init__(self, linear_layer, rank, scaling_rank, init_scale):
super().__init__()
self.in_features = linear_layer.in_features
self.out_features = linear_layer.out_features
self.rank = rank
self.scaling_rank = scaling_rank
self.weight = linear_layer.weight
self.bias = linear_layer.bias
if self.rank > 0:
self.lora_a = nn.Parameter(torch.randn(rank, linear_layer.in_features) * init_scale)
if init_scale < 0:
self.lora_b = nn.Parameter(torch.randn(linear_layer.out_features, rank) * init_scale)
else:
self.lora_b = nn.Parameter(torch.zeros(linear_layer.out_features, rank))
if self.scaling_rank:
self.multi_lora_a = nn.Parameter(
torch.ones(self.scaling_rank, linear_layer.in_features)
+ torch.randn(self.scaling_rank, linear_layer.in_features) * init_scale
)
if init_scale < 0:
self.multi_lora_b = nn.Parameter(
torch.ones(linear_layer.out_features, self.scaling_rank)
+ torch.randn(linear_layer.out_features, self.scaling_rank) * init_scale
)
else:
self.multi_lora_b = nn.Parameter(torch.ones(linear_layer.out_features, self.scaling_rank))
def forward(self, input):
if self.scaling_rank == 1 and self.rank == 0:
# parsimonious implementation for ia3 and lora scaling
if self.multi_lora_a.requires_grad:
hidden = F.linear((input * self.multi_lora_a.flatten()), self.weight, self.bias)
else:
hidden = F.linear(input, self.weight, self.bias)
if self.multi_lora_b.requires_grad:
hidden = hidden * self.multi_lora_b.flatten()
return hidden
else:
# general implementation for lora (adding and scaling)
weight = self.weight
if self.scaling_rank:
weight = weight * torch.matmul(self.multi_lora_b, self.multi_lora_a) / self.scaling_rank
if self.rank:
weight = weight + torch.matmul(self.lora_b, self.lora_a) / self.rank
return F.linear(input, weight, self.bias)
def extra_repr(self):
return "in_features={}, out_features={}, bias={}, rank={}, scaling_rank={}".format(
self.in_features, self.out_features, self.bias is not None, self.rank, self.scaling_rank
)
def modify_with_lora(transformer, config):
for m_name, module in dict(transformer.named_modules()).items():
if re.fullmatch(config.lora_modules, m_name):
for c_name, layer in dict(module.named_children()).items():
if re.fullmatch(config.lora_layers, c_name):
assert isinstance(
layer, nn.Linear
), f"LoRA can only be applied to torch.nn.Linear, but {layer} is {type(layer)}."
setattr(
module,
c_name,
LoRALinear(layer, config.lora_rank, config.lora_scaling_rank, config.lora_init_scale),
)
return transformer
def load_T5_model_classification(checkpoint, num_labels, half_precision, full = False, deepspeed=True):
# Load model and tokenizer
if "ankh" in checkpoint :
model = T5EncoderModel.from_pretrained(checkpoint)
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
elif "prot_t5" in checkpoint:
# possible to load the half precision model (thanks to @pawel-rezo for pointing that out)
if half_precision and deepspeed:
#tokenizer = T5Tokenizer.from_pretrained('Rostlab/prot_t5_xl_half_uniref50-enc', do_lower_case=False)
#model = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_half_uniref50-enc", torch_dtype=torch.float16)#.to(torch.device('cuda')
tokenizer = T5Tokenizer.from_pretrained(checkpoint, do_lower_case=False)
model = T5EncoderModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(torch.device('cuda'))
else:
model = T5EncoderModel.from_pretrained(checkpoint)
tokenizer = T5Tokenizer.from_pretrained(checkpoint)
elif "ProstT5" in checkpoint:
if half_precision and deepspeed:
tokenizer = T5Tokenizer.from_pretrained(checkpoint, do_lower_case=False)
model = T5EncoderModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(torch.device('cuda'))
else:
model = T5EncoderModel.from_pretrained(checkpoint)
tokenizer = T5Tokenizer.from_pretrained(checkpoint)
# Create new Classifier model with PT5 dimensions
class_config=ClassConfig(num_labels=num_labels)
class_model=T5EncoderForTokenClassification(model.config,class_config)
# Set encoder and embedding weights to checkpoint weights
class_model.shared=model.shared
class_model.encoder=model.encoder
# Delete the checkpoint model
model=class_model
del class_model
if full == True:
return model, tokenizer
# Print number of trainable parameters
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print("T5_Classfier\nTrainable Parameter: "+ str(params))
if custom_lora:
#the linear CustomLoRAConfig allows better quality predictions, but more memory is needed
# Add model modification lora
config = CustomLoRAConfig()
# Add LoRA layers
model = modify_with_lora(model, config)
# Freeze Embeddings and Encoder (except LoRA)
for (param_name, param) in model.shared.named_parameters():
param.requires_grad = False
for (param_name, param) in model.encoder.named_parameters():
param.requires_grad = False
for (param_name, param) in model.named_parameters():
if re.fullmatch(config.trainable_param_names, param_name):
param.requires_grad = True
else:
# lora modification
peft_config = LoraConfig(
r=4, lora_alpha=1, bias="all", target_modules=["q","k","v","o"]
)
model = inject_adapter_in_model(peft_config, model)
# Unfreeze the prediction head
for (param_name, param) in model.classifier.named_parameters():
param.requires_grad = True
# Print trainable Parameter
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print("T5_LoRA_Classfier\nTrainable Parameter: "+ str(params) + "\n")
return model, tokenizer
class EsmForTokenClassificationCustom(EsmPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids", r"cnn", r"ffn", r"transformer"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.esm = EsmModel(config, add_pooling_layer=False)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
if cnn_head:
self.cnn = nn.Conv1d(config.hidden_size, 512, kernel_size=3, padding=1)
self.classifier = nn.Linear(512, config.num_labels)
elif ffn_head:
# Multi-layer feed-forward network (FFN) as an alternative head
self.ffn = nn.Sequential(
nn.Linear(config.hidden_size, 512),
nn.ReLU(),
nn.Linear(512, 256),
nn.ReLU(),
nn.Linear(256, config.num_labels)
)
elif transformer_head:
# Transformer layer as an alternative head
encoder_layer = nn.TransformerEncoderLayer(d_model=config.hidden_size, nhead=8)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=1)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
else:
# Default classification head
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
if cnn_head:
sequence_output = sequence_output.transpose(1, 2)
sequence_output = self.cnn(sequence_output)
sequence_output = sequence_output.transpose(1, 2)
logits = self.classifier(sequence_output)
elif ffn_head:
logits = self.ffn(sequence_output)
elif transformer_head:
# Apply transformer encoder for the transformer head
sequence_output = self.transformer_encoder(sequence_output)
logits = self.classifier(sequence_output)
else:
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels)
active_labels = torch.where(
active_loss, labels.view(-1), torch.tensor(-100).type_as(labels)
)
valid_logits = active_logits[active_labels != -100]
valid_labels = active_labels[active_labels != -100]
valid_labels = valid_labels.type(torch.LongTensor).to('cuda:0')
loss = loss_fct(valid_logits, valid_labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def _init_weights(self, module):
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv1d):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
# based on transformers DataCollatorForTokenClassification
@dataclass
class DataCollatorForTokenClassificationESM(DataCollatorMixin):
"""
Data collator that will dynamically pad the inputs received, as well as the labels.
Args:
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
The tokenizer used for encoding the data.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
- `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single
sequence is provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'`: No padding (i.e., can output a batch with sequences of different lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
label_pad_token_id (`int`, *optional*, defaults to -100):
The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions).
return_tensors (`str`):
The type of Tensor to return. Allowable values are "np", "pt" and "tf".
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
label_pad_token_id: int = -100
return_tensors: str = "pt"
def torch_call(self, features):
import torch
label_name = "label" if "label" in features[0].keys() else "labels"
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
no_labels_features = [{k: v for k, v in feature.items() if k != label_name} for feature in features]
batch = self.tokenizer.pad(
no_labels_features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
)
if labels is None:
return batch
sequence_length = batch["input_ids"].shape[1]
padding_side = self.tokenizer.padding_side
def to_list(tensor_or_iterable):
if isinstance(tensor_or_iterable, torch.Tensor):
return tensor_or_iterable.tolist()
return list(tensor_or_iterable)
if padding_side == "right":
batch[label_name] = [
# to_list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels
# changed to pad the special tokens at the beginning and end of the sequence
[self.label_pad_token_id] + to_list(label) + [self.label_pad_token_id] * (sequence_length - len(label)-1) for label in labels
]
else:
batch[label_name] = [
[self.label_pad_token_id] * (sequence_length - len(label)) + to_list(label) for label in labels
]
batch[label_name] = torch.tensor(batch[label_name], dtype=torch.float)
return batch
def _torch_collate_batch(examples, tokenizer, pad_to_multiple_of: Optional[int] = None):
"""Collate `examples` into a batch, using the information in `tokenizer` for padding if necessary."""
import torch
# Tensorize if necessary.
if isinstance(examples[0], (list, tuple, np.ndarray)):
examples = [torch.tensor(e, dtype=torch.long) for e in examples]
length_of_first = examples[0].size(0)
# Check if padding is necessary.
are_tensors_same_length = all(x.size(0) == length_of_first for x in examples)
if are_tensors_same_length and (pad_to_multiple_of is None or length_of_first % pad_to_multiple_of == 0):
return torch.stack(examples, dim=0)
# If yes, check if we have a `pad_token`.
if tokenizer._pad_token is None:
raise ValueError(
"You are attempting to pad samples but the tokenizer you are using"
f" ({tokenizer.__class__.__name__}) does not have a pad token."
)
# Creating the full tensor and filling it with our data.
max_length = max(x.size(0) for x in examples)
if pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
result = examples[0].new_full([len(examples), max_length], tokenizer.pad_token_id)
for i, example in enumerate(examples):
if tokenizer.padding_side == "right":
result[i, : example.shape[0]] = example
else:
result[i, -example.shape[0] :] = example
return result
def tolist(x):
if isinstance(x, list):
return x
elif hasattr(x, "numpy"): # Checks for TF tensors without needing the import
x = x.numpy()
return x.tolist()
#load ESM2 models
def load_esm_model_classification(checkpoint, num_labels, half_precision, full=False, deepspeed=True):
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
if half_precision and deepspeed:
model = EsmForTokenClassificationCustom.from_pretrained(checkpoint,
num_labels = num_labels,
ignore_mismatched_sizes=True,
torch_dtype = torch.float16)
else:
model = EsmForTokenClassificationCustom.from_pretrained(checkpoint,
num_labels = num_labels,
ignore_mismatched_sizes=True)
if full == True:
return model, tokenizer
peft_config = LoraConfig(
r=4, lora_alpha=1, bias="all", target_modules=["query","key","value","dense"]
)
model = inject_adapter_in_model(peft_config, model)
#model.gradient_checkpointing_enable()
# Unfreeze the prediction head
for (param_name, param) in model.classifier.named_parameters():
param.requires_grad = True
return model, tokenizer
def load_model(checkpoint,max_length):
#checkpoint='ThorbenF/prot_t5_xl_uniref50'
#best_model_path='ThorbenF/prot_t5_xl_uniref50/cpt.pth'
full=False
deepspeed=False
mixed=False
num_labels=2
print(checkpoint, num_labels, mixed, full, deepspeed)
# Determine model type and load accordingly
if "esm" in checkpoint:
model, tokenizer = load_esm_model_classification(checkpoint, num_labels, mixed, full, deepspeed)
else:
model, tokenizer = load_T5_model_classification(checkpoint, num_labels, mixed, full, deepspeed)
# Download the file
local_file = hf_hub_download(repo_id=checkpoint, filename="cpt.pth")
# Load the best model state
state_dict = torch.load(local_file, map_location=torch.device('cpu'), weights_only=True)
model.load_state_dict(state_dict)
return model, tokenizer |