|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
from datasets import load_dataset |
|
|
|
|
|
def load_common_corpus(): |
|
try: |
|
return load_dataset("PleIAs/common_corpus") |
|
except Exception as e: |
|
print(f"Error loading dataset: {e}") |
|
return None |
|
|
|
common_corpus = load_common_corpus() |
|
|
|
|
|
def get_example_from_corpus(dataset, index): |
|
if dataset and "train" in dataset: |
|
try: |
|
return dataset["train"][index] |
|
except IndexError: |
|
print("Index out of range for dataset") |
|
return {"text": "No example available"} |
|
else: |
|
return {"text": "Dataset not loaded correctly"} |
|
|
|
|
|
try: |
|
client = InferenceClient("unsloth/Llama-3.2-1B-Instruct") |
|
except Exception as e: |
|
print(f"Error initializing inference client: {e}") |
|
client = None |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
if not client: |
|
return "Error: Inference client not initialized." |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
try: |
|
response = client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
).choices[0].message.content |
|
except Exception as e: |
|
print(f"Error during inference: {e}") |
|
response = "An error occurred while generating a response." |
|
|
|
return response |
|
|
|
|
|
example_data = get_example_from_corpus(common_corpus, 0) |
|
print("Example from PleIAs/common_corpus:", example_data) |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot. Your name is Juninho.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
try: |
|
demo.launch() |
|
except Exception as e: |
|
print(f"Error launching Gradio app: {e}") |