Tutorial / app.py
Thziin's picture
Update app.py
9a3f681 verified
raw
history blame
2.77 kB
import gradio as gr
from huggingface_hub import InferenceClient
from datasets import load_dataset
# Load the PleIAs/common_corpus dataset with error handling
def load_common_corpus():
try:
return load_dataset("PleIAs/common_corpus")
except Exception as e:
print(f"Error loading dataset: {e}")
return None
common_corpus = load_common_corpus()
# Retrieve an example from the dataset safely
def get_example_from_corpus(dataset, index):
if dataset and "train" in dataset:
try:
return dataset["train"][index]
except IndexError:
print("Index out of range for dataset")
return {"text": "No example available"}
else:
return {"text": "Dataset not loaded correctly"}
# Initialize the Inference Client with error handling
try:
client = InferenceClient("unsloth/Llama-3.2-1B-Instruct")
except Exception as e:
print(f"Error initializing inference client: {e}")
client = None
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
if not client:
return "Error: Inference client not initialized."
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
try:
response = client.chat_completion(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
).choices[0].message.content
except Exception as e:
print(f"Error during inference: {e}")
response = "An error occurred while generating a response."
return response
# Example: Retrieve an entry from the dataset to demonstrate integration
example_data = get_example_from_corpus(common_corpus, 0)
print("Example from PleIAs/common_corpus:", example_data)
# Gradio interface with proper error handling
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot. Your name is Juninho.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
try:
demo.launch()
except Exception as e:
print(f"Error launching Gradio app: {e}")