SAMH / model_pipeline /model_trainer.py
Timmyafolami's picture
Upload 35 files
6c17133 verified
import os
import sys
import pandas as pd
import joblib
from datetime import datetime
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
from sklearn.metrics import classification_report, accuracy_score
# Add the root directory to sys.path
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from logging_config.logger_config import get_logger
# Get the logger
logger = get_logger(__name__)
def load_data(file_path):
logger.info(f"Loading data from {file_path}")
return pd.read_csv(file_path)
def train_model(data):
logger.info("Starting model training...")
# check for missing values
if data.isnull().sum().sum() > 0:
logger.error("Missing values found in the dataset.")
# Drop missing values
data.dropna(inplace=True)
logger.info("Missing values dropped.")
# checking the shape of the data
logger.info(f"Data shape: {data.shape}")
# Split data into features and labels
X = data['cleaned_statement']
y = data['status'] # Assuming 'sentiment' is the target column
# Split data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Create a pipeline with TF-IDF Vectorizer and Logistic Regression
pipeline = Pipeline([
('tfidf', TfidfVectorizer()),
('clf', LogisticRegression())
])
# Train the pipeline
pipeline.fit(X_train, y_train)
logger.info("Model training completed.")
# Make predictions
y_pred = pipeline.predict(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)
logger.info(f"Accuracy: {accuracy}")
logger.info(f"Classification Report:\n{report}")
return pipeline, accuracy, report
def save_model(pipeline, version):
# Create the models directory if it doesn't exist
os.makedirs('./models', exist_ok=True)
# Save the pipeline with versioning
model_filename = f'model_v{version}.joblib'
model_path = os.path.join('models', model_filename)
joblib.dump(pipeline, model_path)
logger.info(f"Model saved as {model_path}")
if __name__ == "__main__":
# Path to the cleaned dataset
cleaned_data_path = os.path.join('./data', 'cleaned_data.csv')
# Load the data
data = load_data(cleaned_data_path)
# Train the model
pipeline, accuracy, report = train_model(data)
# Define the model version based on the current datetime
version = datetime.now().strftime("%Y%m%d%H%M%S")
# Save the model
save_model(pipeline, version)
# Print the results
print(f"Model version: {version}")
print(f"Accuracy: {accuracy}")
print(f"Classification Report:\n{report}")