Spaces:
Paused
Paused
File size: 6,384 Bytes
c6cb576 4bf3c80 c6cb576 4bf3c80 83c27e6 4bf3c80 c6cb576 4bf3c80 83c27e6 4bf3c80 c6cb576 4bf3c80 c6cb576 4bf3c80 83c27e6 4bf3c80 c6cb576 4bf3c80 7314e93 4bf3c80 7314e93 4bf3c80 c6cb576 83c27e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer, AutoConfig
import os
import base64
import io
from PIL import Image
import numpy as np
import uuid
import cv2
import re
from globe import title, description, modelinfor, joinus, howto
model_name = 'ucaslcl/GOT-OCR2_0'
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
model = AutoModel.from_pretrained(model_name, trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
model = model.eval().cuda()
model.config.pad_token_id = tokenizer.eos_token_id
UPLOAD_FOLDER = "./uploads"
RESULTS_FOLDER = "./results"
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
if not os.path.exists(folder):
os.makedirs(folder)
def image_to_base64(image):
buffered = io.BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode()
def process_image(image, ocr_type, ocr_box=None, ocr_color=None):
unique_id = str(uuid.uuid4())
image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png")
result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html")
try:
if isinstance(image, dict):
composite_image = image.get("composite")
if composite_image is not None:
if isinstance(composite_image, np.ndarray):
cv2.imwrite(image_path, cv2.cvtColor(composite_image, cv2.COLOR_RGB2BGR))
elif isinstance(composite_image, Image.Image):
composite_image.save(image_path)
else:
return "Error: Unsupported image format from ImageEditor", None
else:
return "Error: No composite image found in ImageEditor output", None
else:
return "Error: Unsupported image format", None
if ocr_color:
res = model.chat(tokenizer, image_path, ocr_type=ocr_type, ocr_color=ocr_color, render=True, save_render_file=result_path)
else:
res = model.chat(tokenizer, image_path, ocr_type=ocr_type, ocr_box=ocr_box, render=True, save_render_file=result_path)
if os.path.exists(result_path):
with open(result_path, 'r') as f:
html_content = f.read()
return res, html_content
else:
return res, None
except Exception as e:
return f"Error: {str(e)}", None
finally:
if os.path.exists(image_path):
os.remove(image_path)
def parse_latex_output(res):
lines = re.split(r'(\$\$.*?\$\$)', res, flags=re.DOTALL)
parsed_lines = []
in_latex = False
latex_buffer = []
for line in lines:
if line == '\n':
if in_latex:
latex_buffer.append(line)
else:
parsed_lines.append(line)
continue
line = line.strip()
latex_patterns = [r'\{', r'\}', r'\[', r'\]', r'\\', r'\$', r'_', r'^', r'"']
contains_latex = any(re.search(pattern, line) for pattern in latex_patterns)
if contains_latex:
if not in_latex:
in_latex = True
latex_buffer = ['$$']
latex_buffer.append(line)
else:
if in_latex:
latex_buffer.append('$$')
parsed_lines.extend(latex_buffer)
in_latex = False
latex_buffer = []
parsed_lines.append(line)
if in_latex:
latex_buffer.append('$$')
parsed_lines.extend(latex_buffer)
return '$$\\$$\n'.join(parsed_lines)
def ocr_demo(image, ocr_type, ocr_color):
res, html_content = process_image(image, ocr_type, ocr_color=ocr_color)
if isinstance(res, str) and res.startswith("Error:"):
return res, None
res = res.replace("\\title", "\\title ")
formatted_res = parse_latex_output(res)
if html_content:
encoded_html = base64.b64encode(html_content.encode('utf-8')).decode('utf-8')
iframe_src = f"data:text/html;base64,{encoded_html}"
iframe = f'<iframe src="{iframe_src}" width="100%" height="600px"></iframe>'
download_link = f'<a href="data:text/html;base64,{encoded_html}" download="result_{uuid.uuid4()}.html">Download Full Result</a>'
return formatted_res, f"{iframe}<br>{download_link}"
return formatted_res, None
with gr.Blocks(theme=gr.themes.Base()) as demo:
with gr.Row():
gr.Markdown(title)
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
gr.Markdown(description)
with gr.Column(scale=1):
with gr.Group():
gr.Markdown(modelinfor)
gr.Markdown(joinus)
with gr.Row():
with gr.Accordion("How to use 🫴🏻👁GOT OCR", open=True):
with gr.Row():
gr.Image("res/image/howto_1.png", label="Select the Following Parameters")
gr.Image("res/image/howto_2.png", label="Click on Paintbrush in the Image Editor")
gr.Image("res/image/howto_3.png", label="Select your Brush Color (Red)")
gr.Image("res/image/howto_4.png", label="Make a Box Around The Text")
with gr.Row():
with gr.Group():
gr.Markdown(howto)
with gr.Row():
with gr.Column(scale=1):
image_editor = gr.ImageEditor(label="Image Editor", type="pil", height=800)
ocr_type_dropdown = gr.Dropdown(
choices=["ocr", "format"],
label="OCR Type",
value="ocr"
)
ocr_color_dropdown = gr.Dropdown(
choices=["red", "green", "blue"],
label="OCR Color",
value="red"
)
submit_button = gr.Button("Process")
with gr.Column(scale=1):
output_markdown = gr.Markdown(label="🫴🏻👁GOT-OCR")
output_html = gr.HTML(label="🫴🏻👁GOT-OCR")
submit_button.click(
ocr_demo,
inputs=[image_editor, ocr_type_dropdown, ocr_color_dropdown],
outputs=[output_markdown, output_html]
)
if __name__ == "__main__":
demo.launch() |