Spaces:
Paused
Paused
File size: 4,362 Bytes
35254ca a1bd8b6 35254ca 927b5de 1874bf4 927b5de 1874bf4 1baccf7 927b5de 1aa5b50 927b5de 1aa5b50 67c4753 1aa5b50 f5d0b7e 927b5de 1874bf4 e1b8424 1874bf4 f5d0b7e 1874bf4 d0d8a82 1874bf4 5ff99f2 ea7c9d2 1874bf4 7c96374 f5d0b7e 8eb345d 5ff99f2 f5d0b7e 1874bf4 1aa5b50 3830fb5 d0d8a82 0b1197e 9db20d7 1aa5b50 88d1760 927b5de 3830fb5 927b5de 3792262 943fb12 927b5de 7504c85 927b5de 3792262 927b5de 1874bf4 968fe0b 1874bf4 d0d8a82 1874bf4 edc6972 927b5de 1874bf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import optimum
import transformers
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM
from optimum.bettertransformer import BetterTransformer
import torch
import gradio as gr
import json
import os
import shutil
import requests
# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"
#Define variables
temperature=0.4
max_new_tokens=240
top_p=0.92
repetition_penalty=1.7
model_name = "OpenLLM-France/Claire-7B-0.1"
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
model = transformers.AutoModelForCausalLM.from_pretrained(model_name,
device_map="auto",
torch_dtype=torch.bfloat16,
load_in_4bit=True # For efficient inference, if supported by the GPU card
)
model = BetterTransformer.transform(model)
# Class to encapsulate the Falcon chatbot
class FalconChatBot:
def __init__(self, system_prompt="Le dialogue suivant est une conversation"):
self.system_prompt = system_prompt
def predict(self, user_message, assistant_message, temperature=0.4, max_new_tokens=700, top_p=0.99, repetition_penalty=1.9):
# Combine the user and assistant messages into a conversation
conversation = f"{self.system_prompt} {assistant_message if assistant_message else ''} {user_message} "
# Encode the conversation using the tokenizer
input_ids = tokenizer.encode(conversation, return_tensors="pt", add_special_tokens=False)
input_ids = input_ids.to(device)
# Generate a response using the Falcon model
response = model.generate(
input_ids=input_ids,
use_cache=False,
early_stopping=False,
bos_token_id=model.config.bos_token_id,
eos_token_id=model.config.eos_token_id,
pad_token_id=model.config.eos_token_id,
temperature=temperature,
do_sample=True,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty
)
# Decode the generated response to text
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
return response_text
# Create the Falcon chatbot instance
falcon_bot = FalconChatBot()
# Define the Gradio interface
title = "👋🏻Bienvenue à Tonic's 🌜🌚Claire Chat !"
description = "Vous pouvez utiliser [🌜🌚ClaireGPT](https://huggingface.co/OpenLLM-France/Claire-7B-0.1) Ou dupliquer pour l'uiliser localement ou sur huggingface! [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)."
examples = [
[
"Le dialogue suivant est une conversation entre Emmanuel Macron et Elon Musk:", # user_message
"[Emmanuel Macron]: Bonjour Monsieur Musk. Je vous remercie de me recevoir aujourd'hui.", # assistant_message
0.9, # temperature
150, # max_new_tokens
0.90, # top_p
1.9, # repetition_penalty
]
]
additional_inputs=[
gr.Textbox("", label="Introduisez Un Personnage Ici ou Mettez En Scene"),
gr.Slider(
label="Max new tokens",
value=100, # Default value
minimum=25,
maximum=256,
step=1,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Temperature",
value=0.7, # Default value
minimum=0.05,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.01,
maximum=0.99,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.9,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
iface = gr.Interface(
fn=falcon_bot.predict,
title=title,
description=description,
examples=examples,
inputs=[
gr.Textbox(label="Utilisez se format pour initier une conversation [Personage:]", type="text", lines=5),
] + additional_inputs,
outputs="text",
theme="ParityError/Anime"
)
# Launch the Gradio interface for the Falcon model
iface.launch() |