Spaces:
Sleeping
Sleeping
import numpy | |
import trimesh | |
import trimesh.sample | |
import trimesh.visual | |
import trimesh.proximity | |
import objaverse | |
import streamlit as st | |
import plotly.graph_objects as go | |
import matplotlib.pyplot as plotlib | |
def get_bytes(x: str): | |
import io, requests | |
return io.BytesIO(requests.get(x).content) | |
def get_image(x: str): | |
try: | |
return plotlib.imread(get_bytes(x), 'auto') | |
except Exception: | |
raise ValueError("Invalid image", x) | |
def model_to_pc(mesh: trimesh.Trimesh, n_sample_points=10000): | |
f32 = numpy.float32 | |
rad = numpy.sqrt(mesh.area / (3 * n_sample_points)) | |
for _ in range(24): | |
pcd, face_idx = trimesh.sample.sample_surface_even(mesh, n_sample_points, rad) | |
rad *= 0.85 | |
if len(pcd) == n_sample_points: | |
break | |
else: | |
raise ValueError("Bad geometry, cannot finish sampling.", mesh.area) | |
if isinstance(mesh.visual, trimesh.visual.ColorVisuals): | |
rgba = mesh.visual.face_colors[face_idx] | |
elif isinstance(mesh.visual, trimesh.visual.TextureVisuals): | |
bc = trimesh.proximity.points_to_barycentric(mesh.triangles[face_idx], pcd) | |
if mesh.visual.uv is None or len(mesh.visual.uv) < mesh.faces[face_idx].max(): | |
uv = numpy.zeros([len(bc), 2]) | |
st.warning("Invalid UV, filling with zeroes") | |
else: | |
uv = numpy.einsum('ntc,nt->nc', mesh.visual.uv[mesh.faces[face_idx]], bc) | |
material = mesh.visual.material | |
if hasattr(material, 'materials'): | |
if len(material.materials) == 0: | |
rgba = numpy.ones_like(pcd) * 0.8 | |
texture = None | |
st.warning("Empty MultiMaterial found, falling back to light grey") | |
else: | |
material = material.materials[0] | |
if hasattr(material, 'image'): | |
texture = material.image | |
if texture is None: | |
rgba = numpy.zeros([len(uv), len(material.main_color)]) + material.main_color | |
elif hasattr(material, 'baseColorTexture'): | |
texture = material.baseColorTexture | |
if texture is None: | |
rgba = numpy.zeros([len(uv), len(material.main_color)]) + material.main_color | |
else: | |
texture = None | |
rgba = numpy.ones_like(pcd) * 0.8 | |
st.warning("Unknown material, falling back to light grey") | |
if texture is not None: | |
rgba = trimesh.visual.uv_to_interpolated_color(uv, texture) | |
if rgba.max() > 1: | |
if rgba.max() > 255: | |
rgba = rgba.astype(f32) / rgba.max() | |
else: | |
rgba = rgba.astype(f32) / 255.0 | |
return numpy.concatenate([numpy.array(pcd, f32), numpy.array(rgba, f32)[:, :3]], axis=-1) | |
def trimesh_to_pc(scene_or_mesh): | |
if isinstance(scene_or_mesh, trimesh.Scene): | |
meshes = [] | |
for node_name in scene_or_mesh.graph.nodes_geometry: | |
# which geometry does this node refer to | |
transform, geometry_name = scene_or_mesh.graph[node_name] | |
# get the actual potential mesh instance | |
geometry = scene_or_mesh.geometry[geometry_name].copy() | |
if not hasattr(geometry, 'triangles'): | |
continue | |
geometry: trimesh.Trimesh | |
geometry = geometry.apply_transform(transform) | |
meshes.append(geometry) | |
total_area = sum(geometry.area for geometry in meshes) | |
if total_area < 1e-6: | |
raise ValueError("Bad geometry: total area too small (< 1e-6)") | |
pcs = [] | |
for geometry in meshes: | |
pcs.append(model_to_pc(geometry, max(1, round(geometry.area / total_area * 10000)))) | |
if not len(pcs): | |
raise ValueError("Unsupported mesh object: no triangles found") | |
return numpy.concatenate(pcs) | |
else: | |
assert isinstance(scene_or_mesh, trimesh.Trimesh) | |
return model_to_pc(scene_or_mesh, 10000) | |
def input_3d_shape(key=None): | |
if key is None: | |
objaid_key = model_key = npy_key = swap_key = None | |
else: | |
objaid_key = key + "_objaid" | |
model_key = key + "_model" | |
npy_key = key + "_npy" | |
swap_key = key + "_swap" | |
objaid = st.text_input("Enter an Objaverse ID", key=objaid_key) | |
model = st.file_uploader("Or upload a model (.glb/.obj/.ply)", key=model_key) | |
npy = st.file_uploader("Or upload a point cloud numpy array (.npy of Nx3 XYZ or Nx6 XYZRGB)", key=npy_key) | |
swap_yz_axes = st.radio("Gravity", ["Y is up (for most Objaverse shapes)", "Z is up"], key=swap_key) == "Z is up" | |
f32 = numpy.float32 | |
def load_data(prog): | |
# load the model | |
prog.progress(0.05, "Preparing Point Cloud") | |
if npy is not None: | |
pc: numpy.ndarray = numpy.load(npy) | |
elif model is not None: | |
pc = trimesh_to_pc(trimesh.load(model, model.name.split(".")[-1])) | |
elif objaid: | |
prog.progress(0.1, "Downloading Objaverse Object") | |
objamodel = objaverse.load_objects([objaid])[objaid] | |
prog.progress(0.2, "Preparing Point Cloud") | |
pc = trimesh_to_pc(trimesh.load(objamodel)) | |
else: | |
raise ValueError("You have to supply 3D input!") | |
prog.progress(0.25, "Preprocessing Point Cloud") | |
assert pc.ndim == 2, "invalid pc shape: ndim = %d != 2" % pc.ndim | |
assert pc.shape[1] in [3, 6], "invalid pc shape: should have 3/6 channels, got %d" % pc.shape[1] | |
pc = pc.astype(f32) | |
if swap_yz_axes: | |
pc[:, [1, 2]] = pc[:, [2, 1]] | |
pc[:, :3] = pc[:, :3] - numpy.mean(pc[:, :3], axis=0) | |
pc[:, :3] = pc[:, :3] / numpy.linalg.norm(pc[:, :3], axis=-1).max() | |
if pc.shape[1] == 3: | |
pc = numpy.concatenate([pc, numpy.ones_like(pc) * 0.4], axis=-1) | |
prog.progress(0.27, "Normalized Point Cloud") | |
if pc.shape[0] >= 10000: | |
pc = pc[numpy.random.permutation(len(pc))[:10000]] | |
elif pc.shape[0] == 0: | |
raise ValueError("Got empty point cloud!") | |
elif pc.shape[0] < 10000: | |
pc = numpy.concatenate([pc, pc[numpy.random.randint(len(pc), size=[10000 - len(pc)])]]) | |
prog.progress(0.3, "Preprocessed Point Cloud") | |
return pc.astype(f32) | |
return load_data | |
def render_pc(pc): | |
rand = numpy.random.permutation(len(pc))[:2048] | |
pc = pc[rand] | |
rgb = (pc[:, 3:] * 255).astype(numpy.uint8) | |
g = go.Scatter3d( | |
x=pc[:, 0], y=pc[:, 1], z=pc[:, 2], | |
mode='markers', | |
marker=dict(size=2, color=[f'rgb({rgb[i, 0]}, {rgb[i, 1]}, {rgb[i, 2]})' for i in range(len(pc))]), | |
) | |
fig = go.Figure(data=[g]) | |
fig.update_layout(scene_camera=dict(up=dict(x=0, y=1, z=0))) | |
fig.update_scenes(aspectmode="data") | |
col1, col2 = st.columns(2) | |
with col1: | |
st.plotly_chart(fig, use_container_width=True) | |
# st.caption("Point Cloud Preview") | |
return col2 | |