Spaces:
Running
Running
File size: 66,590 Bytes
d69c0ed f4fa784 d69c0ed 4429236 d69c0ed 4429236 d69c0ed 82e74ae d69c0ed 4429236 d69c0ed f4fa784 d69c0ed c1e67a6 14be3da d69c0ed c1e67a6 14be3da f4fa784 d69c0ed 68cf021 d69c0ed 68cf021 d69c0ed f4fa784 d69c0ed c1e67a6 ca15fa4 82e74ae d69c0ed 82e74ae d69c0ed 68cf021 d69c0ed 4429236 d69c0ed 4429236 d69c0ed 4429236 d69c0ed 4429236 d69c0ed 4429236 d69c0ed 4429236 d69c0ed 64db329 d69c0ed 64db329 d69c0ed 64db329 d69c0ed 4429236 d69c0ed 4429236 d69c0ed 4429236 d69c0ed 4429236 d69c0ed 4429236 d69c0ed 4429236 d69c0ed 68cf021 d69c0ed f4fa784 d69c0ed 68cf021 d69c0ed 82e74ae ae5c57d 2e3b8fd 82e74ae 2e3b8fd 68cf021 82e74ae 68cf021 82e74ae 68cf021 82e74ae 2e3b8fd 82e74ae ca15fa4 82e74ae ca15fa4 2e3b8fd d69c0ed 82e74ae a4564c8 ae5c57d d69c0ed ae5c57d a4564c8 ae5c57d d69c0ed 64db329 d69c0ed 64db329 d69c0ed 64db329 d69c0ed 64db329 d69c0ed 64db329 d69c0ed 64db329 d69c0ed 64db329 d69c0ed 64db329 d69c0ed 64db329 d69c0ed ae5c57d d69c0ed ae5c57d d69c0ed 64db329 d69c0ed 64db329 d69c0ed 1e3bf64 a4564c8 c1e67a6 d69c0ed a4564c8 c1e67a6 a4564c8 d69c0ed a4564c8 c1e67a6 d69c0ed f4fa784 c1e67a6 d69c0ed a4564c8 d69c0ed a4564c8 d69c0ed a4564c8 d69c0ed a4564c8 d69c0ed a4564c8 d69c0ed 4429236 d69c0ed 4429236 d69c0ed 4429236 d69c0ed 4429236 d69c0ed 4429236 d69c0ed a4564c8 68cf021 4429236 68cf021 4429236 68cf021 d69c0ed 68cf021 d69c0ed 68cf021 d69c0ed a4564c8 d69c0ed 68cf021 4429236 68cf021 4429236 68cf021 d69c0ed 68cf021 d69c0ed 68cf021 d69c0ed 4429236 d69c0ed 4429236 d69c0ed 4429236 d69c0ed 4429236 d69c0ed 4429236 d69c0ed f4fa784 58d8eb5 f4fa784 58d8eb5 f4fa784 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 |
import streamlit as st
import numpy as np
import pandas as pd
import gspread
import pymongo
import re
st.set_page_config(layout="wide")
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["MLB_Database"]
return db
db = init_conn()
game_format = {'Win%': '{:.2%}','First Inning Lead Percentage': '{:.2%}', 'Top Score': '{:.2%}',
'Fifth Inning Lead Percentage': '{:.2%}', '8+ Runs': '{:.2%}', 'LevX': '{:.2%}'}
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
'4x%': '{:.2%}'}
dk_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
dk_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
@st.cache_resource(ttl = 61)
def init_baselines():
collection = db["Hitter_Info"]
cursor = collection.find()
Hitter_info = pd.DataFrame(cursor)
LHP_Info = Hitter_info[Hitter_info['Set'] == 'LHP'].drop_duplicates(subset=['Player'])
RHP_Info = Hitter_info[Hitter_info['Set'] == 'RHP'].drop_duplicates(subset=['Player'])
collection = db["Pitcher_Info"]
cursor = collection.find()
Pitcher_info = pd.DataFrame(cursor)
Pitcher_info = Pitcher_info.rename(columns={'Names':'Player'})
LHH_Info = Pitcher_info[Pitcher_info['Set'] == 'LHH'].drop_duplicates(subset=['Player'])
RHH_Info = Pitcher_info[Pitcher_info['Set'] == 'RHH'].drop_duplicates(subset=['Player'])
collection = db["Player_Range_Of_Outcomes"]
cursor = collection.find()
player_frame = pd.DataFrame(cursor)
roo_data = player_frame.drop(columns=['_id'])
roo_data['Salary'] = roo_data['Salary'].astype(int)
hold_frame = roo_data.copy()
hold_frame['Order'] = np.where(hold_frame['pos_group'] == 'Hitters', hold_frame['Player'].map(RHP_Info.set_index('Player')['Order']), 0)
hold_frame['Hand'] = np.where(hold_frame['pos_group'] == 'Hitters', hold_frame['Player'].map(RHP_Info.set_index('Player')['bats']), hold_frame['Player'].map(RHH_Info.set_index('Player')['Hand']))
try:
hold_frame['Opp'] = hold_frame['Team'].map(RHH_Info.drop_duplicates(subset='Team').set_index('Team')['Opp'])
except:
hold_frame['Opp'] = np.nan
try:
hold_frame['Team_Total'] = hold_frame['Team'].map(RHH_Info.drop_duplicates(subset='Team').set_index('Opp')['Opp_TT'])
except:
hold_frame['Team_Total'] = np.nan
try:
hold_frame['Opp_Total'] = hold_frame['Team'].map(RHH_Info.drop_duplicates(subset='Team').set_index('Team')['Opp_TT'])
except:
hold_frame['Opp_Total'] = np.nan
roo_data.insert(3, 'Opp', hold_frame['Opp'])
roo_data.insert(4, 'Hand', hold_frame['Hand'])
try:
roo_data.insert(5, 'Order', hold_frame['Order'].astype(int))
except:
roo_data.insert(5, 'Order', hold_frame['Order'])
roo_data.insert(6, 'Team_Total', hold_frame['Team_Total'])
roo_data.insert(7, 'Opp_Total', hold_frame['Opp_Total'])
dk_roo = roo_data[roo_data['Site'] == 'Draftkings']
dk_id_map = dict(zip(dk_roo['Player'], dk_roo['player_ID']))
fd_roo = roo_data[roo_data['Site'] == 'Fanduel']
fd_id_map = dict(zip(fd_roo['Player'], fd_roo['player_ID']))
collection = db["Player_SD_Range_Of_Outcomes"]
cursor = collection.find()
player_frame = pd.DataFrame(cursor)
sd_roo_data = player_frame.drop(columns=['_id'])
sd_roo_data['Salary'] = sd_roo_data['Salary'].astype(int)
sd_roo_data = sd_roo_data.rename(columns={'Own': 'Own%', 'Small_Own': 'Small Field Own%', 'Large_Own': 'Large Field Own%', 'Cash_Own': 'Cash Own%'})
sd_hold_frame = sd_roo_data.copy()
sd_hold_frame['Order'] = np.where(sd_hold_frame['Position'] != 'SP', sd_hold_frame['Player'].map(RHP_Info.set_index('Player')['Order']), 0)
sd_hold_frame['Hand'] = np.where(sd_hold_frame['Position'] != 'SP', sd_hold_frame['Player'].map(RHP_Info.set_index('Player')['bats']), sd_hold_frame['Player'].map(RHH_Info.set_index('Player')['Hand']))
try:
sd_hold_frame['Opp'] = sd_hold_frame['Team'].map(RHH_Info.drop_duplicates(subset='Team').set_index('Team')['Opp'])
except:
sd_hold_frame['Opp'] = np.nan
try:
sd_hold_frame['Team_Total'] = sd_hold_frame['Team'].map(RHH_Info.drop_duplicates(subset='Team').set_index('Opp')['Opp_TT'])
except:
sd_hold_frame['Team_Total'] = np.nan
try:
sd_hold_frame['Opp_Total'] = sd_hold_frame['Team'].map(RHH_Info.drop_duplicates(subset='Team').set_index('Team')['Opp_TT'])
except:
sd_hold_frame['Opp_Total'] = np.nan
sd_roo_data.insert(3, 'Opp', sd_hold_frame['Opp'])
sd_roo_data.insert(4, 'Hand', sd_hold_frame['Hand'])
try:
sd_roo_data.insert(5, 'Order', sd_hold_frame['Order'].astype(int))
except:
sd_roo_data.insert(5, 'Order', sd_hold_frame['Order'])
sd_roo_data.insert(6, 'Team_Total', sd_hold_frame['Team_Total'])
sd_roo_data.insert(7, 'Opp_Total', sd_hold_frame['Opp_Total'])
collection = db["Scoring_Percentages"]
cursor = collection.find()
team_frame = pd.DataFrame(cursor)
scoring_percentages = team_frame.drop(columns=['_id'])
scoring_percentages['Runs/$'] = scoring_percentages['Avg Score'] / (scoring_percentages['Avg_Salary'] / 1000)
scoring_percentages = scoring_percentages[['Names', 'Avg_Salary_DK', 'Avg_Salary_FD', 'Stack_Prio', 'Opp_SP', 'Avg First Inning', 'First Inning Lead Percentage', 'Avg Fifth Inning', 'Fifth Inning Lead Percentage', 'Avg Score', 'Runs/$', '8+ runs', 'Win Percentage',
'DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'DK Main Top Score', 'FD Main Top Score', 'DK Secondary Top Score', 'FD Secondary Top Score',
'DK Turbo Top Score', 'FD Turbo Top Score']]
scoring_percentages['8+ runs'] = scoring_percentages['8+ runs'].replace('%', '', regex=True).astype(float)
scoring_percentages['Win Percentage'] = scoring_percentages['Win Percentage'].replace('%', '', regex=True).astype(float)
scoring_percentages['DK Main Top Score'] = scoring_percentages['DK Main Top Score'].replace('', np.nan).astype(float)
scoring_percentages['FD Main Top Score'] = scoring_percentages['FD Main Top Score'].replace('', np.nan).astype(float)
scoring_percentages['DK Secondary Top Score'] = scoring_percentages['DK Secondary Top Score'].replace('', np.nan).astype(float)
scoring_percentages['FD Secondary Top Score'] = scoring_percentages['FD Secondary Top Score'].replace('', np.nan).astype(float)
scoring_percentages['DK Turbo Top Score'] = scoring_percentages['DK Turbo Top Score'].replace('', np.nan).astype(float)
scoring_percentages['FD Turbo Top Score'] = scoring_percentages['FD Turbo Top Score'].replace('', np.nan).astype(float)
return roo_data, sd_roo_data, scoring_percentages, dk_roo, fd_roo, dk_id_map, fd_id_map
@st.cache_data(ttl = 60)
def init_DK_lineups(type_var, slate_var):
if type_var == 'Regular':
if slate_var == 'Main':
collection = db['DK_MLB_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db['DK_MLB_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
# Map names
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
elif slate_var == 'Secondary':
collection = db['DK_MLB_Secondary_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db['DK_MLB_Secondary_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
# Map names
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
elif slate_var == 'Auxiliary':
collection = db['DK_MLB_Turbo_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db['DK_MLB_Turbo_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
# Map names
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
elif type_var == 'Showdown':
if slate_var == 'Main':
collection = db['DK_MLB_SD1_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
elif slate_var == 'Secondary':
collection = db['DK_MLB_SD2_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
elif slate_var == 'Auxiliary':
collection = db['DK_MLB_SD3_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
DK_seed = raw_display.to_numpy()
return DK_seed
@st.cache_data(ttl = 60)
def init_FD_lineups(type_var,slate_var):
if type_var == 'Regular':
if slate_var == 'Main':
collection = db['FD_MLB_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db['FD_MLB_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
# Map names
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
elif slate_var == 'Secondary':
collection = db['FD_MLB_Secondary_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db['FD_MLB_Secondary_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
# Map names
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
elif slate_var == 'Auxiliary':
collection = db['FD_MLB_Turbo_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db['FD_MLB_Turbo_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
# Map names
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
elif type_var == 'Showdown':
if slate_var == 'Main':
collection = db['FD_MLB_SD1_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
elif slate_var == 'Secondary':
collection = db['FD_MLB_SD2_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
elif slate_var == 'Auxiliary':
collection = db['FD_MLB_SD3_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
FD_seed = raw_display.to_numpy()
return FD_seed
@st.cache_data
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
@st.cache_data
def convert_df(array):
array = pd.DataFrame(array, columns=column_names)
return array.to_csv().encode('utf-8')
col1, col2 = st.columns([1, 9])
with col1:
if st.button("Load/Reset Data", key='reset'):
st.cache_data.clear()
roo_data, sd_roo_data, scoring_percentages, dk_roo, fd_roo, dk_id_map, fd_id_map = init_baselines()
hold_display = roo_data
dk_lineups = init_DK_lineups('Regular', 'Main')
fd_lineups = init_FD_lineups('Regular', 'Main')
for key in st.session_state.keys():
del st.session_state[key]
with col2:
with st.container():
col1, col2 = st.columns([3, 3])
with col1:
view_var = st.selectbox("Select view", ["Simple", "Advanced"], key='view_var')
with col2:
site_var = st.selectbox("What site do you want to view?", ('Draftkings', 'Fanduel'), key='site_var')
tab1, tab2, tab3, tab4 = st.tabs(["Scoring Percentages", "Player ROO", "Optimals", "Handbuilder"])
roo_data, sd_roo_data, scoring_percentages, dk_roo, fd_roo, dk_id_map, fd_id_map = init_baselines()
hold_display = roo_data
with tab1:
st.header("Scoring Percentages")
with st.expander("Info and Filters"):
with st.container():
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Turbo Slate'), key='slate_var1')
prio_split = st.radio("Do you want to isolate a specific Stack Priority?", ('No', 'Yes'), key='prio_split')
if prio_split == 'Yes':
prio_var = st.radio("Which Stack Priority are you looking for?", ['OF_Prio', 'IF_Prio'], key='prio_var')
else:
prio_var = None
if site_var == 'Draftkings':
if slate_var1 == 'Main Slate':
scoring_percentages = scoring_percentages[scoring_percentages['DK Main Slate'] == 1]
elif slate_var1 == 'Secondary Slate':
scoring_percentages = scoring_percentages[scoring_percentages['DK Secondary Slate'] == 1]
elif slate_var1 == 'Turbo Slate':
scoring_percentages = scoring_percentages[scoring_percentages['DK Turbo Slate'] == 1]
elif site_var == 'Fanduel':
if slate_var1 == 'Main Slate':
scoring_percentages = scoring_percentages[scoring_percentages['FD Main Slate'] == 1]
elif slate_var1 == 'Secondary Slate':
scoring_percentages = scoring_percentages[scoring_percentages['FD Secondary Slate'] == 1]
elif slate_var1 == 'Turbo Slate':
scoring_percentages = scoring_percentages[scoring_percentages['FD Turbo Slate'] == 1]
dk_hitters_only = dk_roo[dk_roo['pos_group'] != 'Pitchers']
if slate_var1 == 'Main Slate':
dk_hitters_only = dk_hitters_only[dk_hitters_only['Slate'] == 'main_slate']
elif slate_var1 == 'Secondary Slate':
dk_hitters_only = dk_hitters_only[dk_hitters_only['Slate'] == 'secondary_slate']
elif slate_var1 == 'Turbo Slate':
dk_hitters_only = dk_hitters_only[dk_hitters_only['Slate'] == 'turbo_slate']
dk_hitters_only = dk_hitters_only.replace('CWS', 'CHW')
dk_team_ownership = dk_hitters_only.groupby('Team')['Own%'].sum().reset_index()
fd_hitters_only = fd_roo[fd_roo['pos_group'] != 'Pitchers']
if slate_var1 == 'Main Slate':
fd_hitters_only = fd_hitters_only[fd_hitters_only['Slate'] == 'main_slate']
elif slate_var1 == 'Secondary Slate':
fd_hitters_only = fd_hitters_only[fd_hitters_only['Slate'] == 'secondary_slate']
elif slate_var1 == 'Turbo Slate':
fd_hitters_only = fd_hitters_only[fd_hitters_only['Slate'] == 'turbo_slate']
fd_hitters_only = fd_hitters_only.replace('CWS', 'CHW')
fd_team_ownership = fd_hitters_only.groupby('Team')['Own%'].sum().reset_index()
scoring_percentages = scoring_percentages.merge(dk_team_ownership, left_on='Names', right_on='Team', how='left')
scoring_percentages.rename(columns={'Own%': 'DK Own%'}, inplace=True)
scoring_percentages.drop('Team', axis=1, inplace=True)
scoring_percentages = scoring_percentages.merge(fd_team_ownership, left_on='Names', right_on='Team', how='left')
scoring_percentages.rename(columns={'Own%': 'FD Own%'}, inplace=True)
scoring_percentages.drop('Team', axis=1, inplace=True)
if site_var == 'Draftkings':
if slate_var1 == 'Main Slate':
scoring_percentages['DK LevX'] = scoring_percentages['DK Main Top Score'].rank(pct=True).astype(float) - scoring_percentages['DK Own%'].rank(pct=True).astype(float)
scoring_percentages = scoring_percentages.rename(columns={'DK Main Top Score': 'Top Score'})
scoring_percentages = scoring_percentages.drop(['DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'FD Main Top Score', 'DK Secondary Top Score', 'FD Secondary Top Score', 'DK Turbo Top Score', 'FD Turbo Top Score'], axis=1)
elif slate_var1 == 'Secondary Slate':
scoring_percentages['DK LevX'] = scoring_percentages['DK Secondary Top Score'].rank(pct=True).astype(float) - scoring_percentages['DK Own%'].rank(pct=True).astype(float)
scoring_percentages = scoring_percentages.rename(columns={'DK Secondary Top Score': 'Top Score'})
scoring_percentages = scoring_percentages.drop(['DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'FD Main Top Score', 'DK Main Top Score', 'FD Secondary Top Score', 'DK Turbo Top Score', 'FD Turbo Top Score'], axis=1)
elif slate_var1 == 'Turbo Slate':
scoring_percentages['DK LevX'] = scoring_percentages['DK Turbo Top Score'].rank(pct=True).astype(float) - scoring_percentages['DK Own%'].rank(pct=True).astype(float)
scoring_percentages = scoring_percentages.rename(columns={'DK Turbo Top Score': 'Top Score'})
scoring_percentages = scoring_percentages.drop(['DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'FD Main Top Score', 'DK Main Top Score', 'FD Secondary Top Score', 'DK Secondary Top Score', 'FD Turbo Top Score'], axis=1)
elif site_var == 'Fanduel':
if slate_var1 == 'Main Slate':
scoring_percentages['FD LevX'] = scoring_percentages['FD Main Top Score'].rank(pct=True).astype(float) - scoring_percentages['FD Own%'].rank(pct=True).astype(float)
scoring_percentages = scoring_percentages.rename(columns={'FD Main Top Score': 'Top Score'})
scoring_percentages = scoring_percentages.drop(['DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'DK Main Top Score', 'DK Secondary Top Score', 'FD Secondary Top Score', 'DK Turbo Top Score', 'FD Turbo Top Score'], axis=1)
elif slate_var1 == 'Secondary Slate':
scoring_percentages['FD LevX'] = scoring_percentages['FD Secondary Top Score'].rank(pct=True).astype(float) - scoring_percentages['FD Own%'].rank(pct=True).astype(float)
scoring_percentages = scoring_percentages.rename(columns={'FD Secondary Top Score': 'Top Score'})
scoring_percentages = scoring_percentages.drop(['DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'FD Main Top Score', 'DK Main Top Score', 'DK Secondary Top Score', 'DK Turbo Top Score', 'FD Turbo Top Score'], axis=1)
elif slate_var1 == 'Turbo Slate':
scoring_percentages['FD LevX'] = scoring_percentages['FD Turbo Top Score'].rank(pct=True).astype(float) - scoring_percentages['FD Own%'].rank(pct=True).astype(float)
scoring_percentages = scoring_percentages.rename(columns={'FD Turbo Top Score': 'Top Score'})
scoring_percentages = scoring_percentages.drop(['DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'FD Main Top Score', 'DK Main Top Score', 'FD Secondary Top Score', 'DK Secondary Top Score', 'DK Turbo Top Score'], axis=1)
scoring_percentages = scoring_percentages.sort_values(by='8+ runs', ascending=False)
if site_var == 'Draftkings':
scoring_percentages = scoring_percentages.rename(columns={'DK LevX': 'LevX', 'DK Own%': 'Own%', 'Avg Score': 'Runs', 'Win Percentage': 'Win%', '8+ runs': '8+ Runs'})
scoring_percentages = scoring_percentages.drop(['FD Own%', 'Avg_Salary_FD'], axis=1)
elif site_var == 'Fanduel':
scoring_percentages = scoring_percentages.rename(columns={'FD LevX': 'LevX', 'FD Own%': 'Own%', 'Avg Score': 'Runs', 'Win Percentage': 'Win%', '8+ runs': '8+ Runs'})
scoring_percentages = scoring_percentages.drop(['DK Own%', 'Avg_Salary_DK'], axis=1)
if view_var == "Simple":
scoring_percentages = scoring_percentages[['Names', 'Runs', '8+ Runs', 'Win%', 'LevX', 'Own%']]
scoring_percentages = scoring_percentages.set_index('Names', drop=True)
st.dataframe(scoring_percentages.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own%']).format(game_format, precision=2), height=750, use_container_width = True)
elif view_var == "Advanced":
if prio_var is not None:
scoring_percentages = scoring_percentages[scoring_percentages['Stack_Prio'] == prio_var]
scoring_percentages = scoring_percentages.set_index('Names', drop=True)
st.dataframe(scoring_percentages.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Avg_Salary', 'Own%']).format(game_format, precision=2), height=750, use_container_width = True)
with tab2:
st.header("Player ROO")
with st.expander("Info and Filters"):
with st.container():
slate_type_var2 = st.radio("Which slate type are you loading?", ('Regular', 'Showdown'), key='slate_type_var2')
slate_var2 = st.radio("Which slate data are you loading?", ('Main', 'Secondary', 'Auxiliary'), key='slate_var2')
group_var2 = st.radio("Which position group would you like to view?", ('All', 'Pitchers', 'Hitters'), key='group_var2')
team_var2 = st.selectbox("Which team would you like to view?", ['All', 'Specific'], key='team_var2')
if team_var2 == 'Specific':
team_select2 = st.multiselect("Select your team(s)", roo_data['Team'].unique(), key='team_select2')
else:
team_select2 = None
pos_var2 = st.selectbox("Which position(s) would you like to view?", ['All', 'Specific'], key='pos_var2')
if pos_var2 == 'Specific':
pos_select2 = st.multiselect("Select your position(s)", roo_data['Position'].unique(), key='pos_select2')
else:
pos_select2 = None
if slate_type_var2 == 'Regular':
if site_var == 'Draftkings':
player_roo_raw = dk_roo.copy()
if group_var2 == 'All':
pass
elif group_var2 == 'Pitchers':
player_roo_raw = player_roo_raw[player_roo_raw['pos_group'] == 'Pitchers']
elif group_var2 == 'Hitters':
player_roo_raw = player_roo_raw[player_roo_raw['pos_group'] == 'Hitters']
elif site_var == 'Fanduel':
player_roo_raw = fd_roo.copy()
if group_var2 == 'All':
pass
elif group_var2 == 'Pitchers':
player_roo_raw = player_roo_raw[player_roo_raw['pos_group'] == 'Pitchers']
elif group_var2 == 'Hitters':
player_roo_raw = player_roo_raw[player_roo_raw['pos_group'] == 'Hitters']
if slate_var2 == 'Main':
player_roo_raw = player_roo_raw[player_roo_raw['Slate'] == 'main_slate']
elif slate_var2 == 'Secondary':
player_roo_raw = player_roo_raw[player_roo_raw['Slate'] == 'secondary_slate']
elif slate_var2 == 'Auxiliary':
player_roo_raw = player_roo_raw[player_roo_raw['Slate'] == 'turbo_slate']
elif slate_type_var2 == 'Showdown':
player_roo_raw = sd_roo_data.copy()
if site_var == 'Draftkings':
player_roo_raw['site'] = 'Draftkings'
elif site_var == 'Fanduel':
player_roo_raw['site'] = 'Fanduel'
if slate_var2 == 'Main':
player_roo_raw = player_roo_raw[player_roo_raw['slate'] == 'DK SD1']
elif slate_var2 == 'Secondary':
player_roo_raw = player_roo_raw[player_roo_raw['slate'] == 'DK SD2']
elif slate_var2 == 'Auxiliary':
player_roo_raw = player_roo_raw[player_roo_raw['slate'] == 'DK SD3']
if team_select2:
player_roo_raw = player_roo_raw[player_roo_raw['Team'].isin(team_select2)]
if pos_select2:
position_mask = player_roo_raw['Position'].apply(lambda x: any(pos in x for pos in pos_select2))
player_roo_raw = player_roo_raw[position_mask]
player_roo_disp = player_roo_raw
if slate_type_var2 == 'Regular':
player_roo_disp = player_roo_disp.drop(columns=['Site', 'Slate', 'pos_group', 'timestamp', 'player_ID'])
elif slate_type_var2 == 'Showdown':
player_roo_disp = player_roo_disp.drop(columns=['site', 'slate', 'version', 'timestamp'])
player_roo_disp = player_roo_disp.drop_duplicates(subset=['Player'])
if view_var == "Simple":
try:
player_roo_disp = player_roo_disp[['Player', 'Salary', 'Median', 'Ceiling', 'Own%', 'Position', 'Team']]
player_roo_disp = player_roo_disp.set_index('Player', drop=True)
st.dataframe(player_roo_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Salary', 'Own%']).format(player_roo_format, precision=2), height=750, use_container_width = True)
except:
player_roo_disp = player_roo_disp.set_index('Player', drop=True)
st.dataframe(player_roo_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Salary', 'Own%']).format(player_roo_format, precision=2), height=750, use_container_width = True)
elif view_var == "Advanced":
try:
player_roo_disp = player_roo_disp.set_index('Player', drop=True)
st.dataframe(player_roo_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Order', 'Salary', 'Own%', 'Small Field Own%', 'Large Field Own%', 'Cash Own%']).format(player_roo_format, precision=2), height=750, use_container_width = True)
except:
# player_roo_disp = player_roo_disp.set_index('Player', drop=True)
st.dataframe(player_roo_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Order', 'Salary', 'Own%', 'Small Field Own%', 'Large Field Own%', 'Cash Own%']).format(player_roo_format, precision=2), height=750, use_container_width = True)
with tab3:
st.header("Optimals")
with st.expander("Info and Filters"):
col1, col2, col3 = st.columns(3)
with col1:
slate_type_var3 = st.radio("Which slate type are you loading?", ('Regular', 'Showdown'), key='slate_type_var3')
if slate_type_var3 == 'Regular':
raw_baselines = roo_data
elif slate_type_var3 == 'Showdown':
raw_baselines = sd_roo_data
slate_var3 = st.radio("Which slate data are you loading?", ('Main', 'Secondary', 'Auxiliary'), key='slate_var3')
if slate_type_var3 == 'Regular':
if site_var == 'Draftkings':
dk_lineups = init_DK_lineups(slate_type_var3, slate_var3)
elif site_var == 'Fanduel':
fd_lineups = init_FD_lineups(slate_type_var3, slate_var3)
elif slate_type_var3 == 'Showdown':
if site_var == 'Draftkings':
dk_lineups = init_DK_lineups(slate_type_var3, slate_var3)
elif site_var == 'Fanduel':
fd_lineups = init_FD_lineups(slate_type_var3, slate_var3)
with col2:
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
if player_var1 == 'Specific Players':
player_var2 = st.multiselect('Which players do you want?', options = raw_baselines['Player'].unique())
elif player_var1 == 'Full Slate':
player_var2 = raw_baselines.Player.values.tolist()
with col3:
if site_var == 'Draftkings':
salary_min_var = st.number_input("Minimum salary used", min_value = 0, max_value = 50000, value = 49000, step = 100, key = 'salary_min_var')
salary_max_var = st.number_input("Maximum salary used", min_value = 0, max_value = 50000, value = 50000, step = 100, key = 'salary_max_var')
elif site_var == 'Fanduel':
salary_min_var = st.number_input("Minimum salary used", min_value = 0, max_value = 35000, value = 34000, step = 100, key = 'salary_min_var')
salary_max_var = st.number_input("Maximum salary used", min_value = 0, max_value = 35000, value = 35000, step = 100, key = 'salary_max_var')
if site_var == 'Draftkings':
if slate_type_var3 == 'Regular':
ROO_slice = raw_baselines[raw_baselines['Site'] == 'Draftkings']
player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
column_names = dk_columns
elif slate_type_var3 == 'Showdown':
player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
column_names = dk_sd_columns
# Get the minimum and maximum ownership values from dk_lineups
min_own = np.min(dk_lineups[:,12])
max_own = np.max(dk_lineups[:,12])
elif site_var == 'Fanduel':
raw_baselines = hold_display
if slate_type_var3 == 'Regular':
ROO_slice = raw_baselines[raw_baselines['Site'] == 'Fanduel']
player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
column_names = fd_columns
elif slate_type_var3 == 'Showdown':
player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
column_names = fd_sd_columns
# Get the minimum and maximum ownership values from dk_lineups
min_own = np.min(fd_lineups[:,11])
max_own = np.max(fd_lineups[:,11])
if st.button("Prepare full data export", key='data_export'):
name_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
data_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
if site_var == 'Draftkings':
if slate_type_var3 == 'Regular':
map_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
elif slate_type_var3 == 'Showdown':
map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
for col_idx in map_columns:
data_export[col_idx] = data_export[col_idx].map(dk_id_map)
elif site_var == 'Fanduel':
if slate_type_var3 == 'Regular':
map_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
elif slate_type_var3 == 'Showdown':
map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4']
for col_idx in map_columns:
data_export[col_idx] = data_export[col_idx].map(fd_id_map)
st.download_button(
label="Export optimals set (IDs)",
data=convert_df(data_export),
file_name='MLB_optimals_export.csv',
mime='text/csv',
)
st.download_button(
label="Export optimals set (Names)",
data=convert_df(name_export),
file_name='MLB_optimals_export.csv',
mime='text/csv',
)
if site_var == 'Draftkings':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = dk_lineups.copy()
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif 'working_seed' not in st.session_state:
st.session_state.working_seed = dk_lineups.copy()
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = dk_lineups.copy()
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif site_var == 'Fanduel':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = fd_lineups.copy()
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif 'working_seed' not in st.session_state:
st.session_state.working_seed = fd_lineups.copy()
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = fd_lineups.copy()
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
st.session_state.data_export_display = st.session_state.data_export_display[st.session_state.data_export_display['salary'] >= salary_min_var]
st.session_state.data_export_display = st.session_state.data_export_display[st.session_state.data_export_display['salary'] <= salary_max_var]
export_file = st.session_state.data_export_display.copy()
name_export = st.session_state.data_export_display.copy()
if site_var == 'Draftkings':
if slate_type_var3 == 'Regular':
map_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
elif slate_type_var3 == 'Showdown':
map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
for col_idx in map_columns:
export_file[col_idx] = export_file[col_idx].map(dk_id_map)
elif site_var == 'Fanduel':
if slate_type_var3 == 'Regular':
map_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
elif slate_type_var3 == 'Showdown':
map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4']
for col_idx in map_columns:
export_file[col_idx] = export_file[col_idx].map(fd_id_map)
with st.container():
if st.button("Reset Optimals", key='reset3'):
for key in st.session_state.keys():
del st.session_state[key]
if site_var == 'Draftkings':
st.session_state.working_seed = dk_lineups.copy()
elif site_var == 'Fanduel':
st.session_state.working_seed = fd_lineups.copy()
if 'data_export_display' in st.session_state:
st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
st.download_button(
label="Export display optimals (IDs)",
data=convert_df(export_file),
file_name='MLB_display_optimals.csv',
mime='text/csv',
)
st.download_button(
label="Export display optimals (Names)",
data=convert_df(name_export),
file_name='MLB_display_optimals.csv',
mime='text/csv',
)
with st.container():
if slate_type_var3 == 'Regular':
if 'working_seed' in st.session_state:
# Create a new dataframe with summary statistics
if site_var == 'Draftkings':
summary_df = pd.DataFrame({
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
'Salary': [
np.min(st.session_state.working_seed[:,10]),
np.mean(st.session_state.working_seed[:,10]),
np.max(st.session_state.working_seed[:,10]),
np.std(st.session_state.working_seed[:,10])
],
'Proj': [
np.min(st.session_state.working_seed[:,11]),
np.mean(st.session_state.working_seed[:,11]),
np.max(st.session_state.working_seed[:,11]),
np.std(st.session_state.working_seed[:,11])
],
'Own': [
np.min(st.session_state.working_seed[:,16]),
np.mean(st.session_state.working_seed[:,16]),
np.max(st.session_state.working_seed[:,16]),
np.std(st.session_state.working_seed[:,16])
]
})
elif site_var == 'Fanduel':
summary_df = pd.DataFrame({
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
'Salary': [
np.min(st.session_state.working_seed[:,9]),
np.mean(st.session_state.working_seed[:,9]),
np.max(st.session_state.working_seed[:,9]),
np.std(st.session_state.working_seed[:,9])
],
'Proj': [
np.min(st.session_state.working_seed[:,10]),
np.mean(st.session_state.working_seed[:,10]),
np.max(st.session_state.working_seed[:,10]),
np.std(st.session_state.working_seed[:,10])
],
'Own': [
np.min(st.session_state.working_seed[:,15]),
np.mean(st.session_state.working_seed[:,15]),
np.max(st.session_state.working_seed[:,15]),
np.std(st.session_state.working_seed[:,15])
]
})
# Set the index of the summary dataframe as the "Metric" column
summary_df = summary_df.set_index('Metric')
# Display the summary dataframe
st.subheader("Optimal Statistics")
st.dataframe(summary_df.style.format({
'Salary': '{:.2f}',
'Proj': '{:.2f}',
'Own': '{:.2f}'
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)
with st.container():
tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"])
with tab1:
if 'data_export_display' in st.session_state:
if site_var == 'Draftkings':
if slate_type_var3 == 'Regular':
player_columns = st.session_state.data_export_display.iloc[:, :10]
elif slate_type_var3 == 'Showdown':
player_columns = st.session_state.data_export_display.iloc[:, :6]
elif site_var == 'Fanduel':
if slate_type_var3 == 'Regular':
player_columns = st.session_state.data_export_display.iloc[:, :9]
elif slate_type_var3 == 'Showdown':
player_columns = st.session_state.data_export_display.iloc[:, :5]
# Flatten the DataFrame and count unique values
value_counts = player_columns.values.flatten().tolist()
value_counts = pd.Series(value_counts).value_counts()
percentages = (value_counts / lineup_num_var * 100).round(2)
# Create a DataFrame with the results
summary_df = pd.DataFrame({
'Player': value_counts.index,
'Frequency': value_counts.values,
'Percentage': percentages.values
})
# Sort by frequency in descending order
summary_df['Salary'] = summary_df['Player'].map(player_salaries)
summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']]
summary_df = summary_df.sort_values('Frequency', ascending=False)
summary_df = summary_df.set_index('Player')
# Display the table
st.write("Player Frequency Table:")
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)
st.download_button(
label="Export player frequency",
data=convert_df_to_csv(summary_df),
file_name='MLB_player_frequency.csv',
mime='text/csv',
)
with tab2:
if 'working_seed' in st.session_state:
if site_var == 'Draftkings':
if slate_type_var3 == 'Regular':
player_columns = st.session_state.working_seed[:, :10]
elif slate_type_var3 == 'Showdown':
player_columns = st.session_state.working_seed[:, :7]
elif site_var == 'Fanduel':
if slate_type_var3 == 'Regular':
player_columns = st.session_state.working_seed[:, :9]
elif slate_type_var3 == 'Showdown':
player_columns = st.session_state.working_seed[:, :6]
# Flatten the DataFrame and count unique values
value_counts = player_columns.flatten().tolist()
value_counts = pd.Series(value_counts).value_counts()
percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2)
# Create a DataFrame with the results
summary_df = pd.DataFrame({
'Player': value_counts.index,
'Frequency': value_counts.values,
'Percentage': percentages.values
})
# Sort by frequency in descending order
summary_df['Salary'] = summary_df['Player'].map(player_salaries)
summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']]
summary_df = summary_df.sort_values('Frequency', ascending=False)
summary_df = summary_df.set_index('Player')
# Display the table
st.write("Seed Frame Frequency Table:")
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)
st.download_button(
label="Export seed frame frequency",
data=convert_df_to_csv(summary_df),
file_name='MLB_seed_frame_frequency.csv',
mime='text/csv',
)
with tab4:
col1, col2 = st.columns(2)
with col1:
st.header("Handbuilder")
with col2:
slate_var3 = st.selectbox("Slate Selection", options=['Main', 'Secondary', 'Auxiliary'])
if site_var == 'Draftkings':
if slate_var3 == 'Main':
handbuild_roo = dk_roo[dk_roo['Slate'] == 'main_slate']
elif slate_var3 == 'Secondary':
handbuild_roo = dk_roo[dk_roo['Slate'] == 'secondary_slate']
elif slate_var3 == 'Auxiliary':
handbuild_roo = dk_roo[dk_roo['Slate'] == 'turbo_slate']
else:
if slate_var3 == 'Main':
handbuild_roo = fd_roo[fd_roo['Slate'] == 'main_slate']
elif slate_var3 == 'Secondary':
handbuild_roo = fd_roo[fd_roo['Slate'] == 'secondary_slate']
elif slate_var3 == 'Auxiliary':
handbuild_roo = fd_roo[fd_roo['Slate'] == 'turbo_slate']
# --- POSITION LIMITS ---
if site_var == 'Draftkings':
position_limits = {
'SP': 2,
'C': 1,
'1B': 1,
'2B': 1,
'3B': 1,
'SS': 1,
'OF': 3,
# Add more as needed
}
max_salary = 50000
max_players = 10
else:
position_limits = {
'P': 1,
'C_1B': 1,
'2B': 1,
'3B': 1,
'SS': 1,
'OF': 3,
'UTIL': 1,
# Add more as needed
}
max_salary = 35000
max_players = 9
# --- LINEUP STATE ---
if 'handbuilder_lineup' not in st.session_state:
st.session_state['handbuilder_lineup'] = pd.DataFrame(columns=['Player', 'Order', 'Position', 'Team', 'Team_Total', 'Opp_Total', 'Salary', 'Median', '2x%', 'Own%'])
if 'handbuilder_select_key' not in st.session_state:
st.session_state['handbuilder_select_key'] = 0
# Count positions in the current lineup
lineup = st.session_state['handbuilder_lineup']
slot_counts = lineup['Slot'].value_counts() if not lineup.empty else {}
# --- PLAYER FILTERS ---
with st.expander("Player Filters"):
col1, col2 = st.columns(2)
with col1:
pos_select3 = st.multiselect("Select your position(s)", options=['P', 'C', '1B', '2B', '3B', 'SS', 'OF'], key='pos_select3')
with col2:
salary_var = st.number_input("Salary Max", min_value = 0, max_value = 20000, value = 20000, step = 100)
# --- TEAM FILTER UI ---
with st.expander("Team Filters"):
all_teams = sorted(handbuild_roo['Team'].unique())
st.markdown("**Toggle teams to include:**")
team_cols = st.columns(len(all_teams) // 2 + 1)
selected_teams = []
for idx, team in enumerate(all_teams):
col = team_cols[idx % len(team_cols)]
if f"handbuilder_team_{team}" not in st.session_state:
st.session_state[f"handbuilder_team_{team}"] = False
checked = col.toggle(team, value=st.session_state[f"handbuilder_team_{team}"], key=f"handbuilder_team_{team}")
if checked:
selected_teams.append(team)
# If no teams selected, show all teams
if selected_teams:
player_select_df = handbuild_roo[
handbuild_roo['Team'].isin(selected_teams)
][['Player', 'Position', 'Team', 'Team_Total', 'Opp_Total', 'Salary', 'Median', '2x%', 'Order', 'Hand', 'Own%']].drop_duplicates(subset=['Player', 'Team']).sort_values(by='Order', ascending=True).copy()
else:
player_select_df = handbuild_roo[['Player', 'Position', 'Team', 'Team_Total', 'Opp_Total', 'Salary', 'Median', '2x%', 'Order', 'Hand', 'Own%']].drop_duplicates(subset=['Player', 'Team']).copy()
# If no teams selected, show all teams
if pos_select3:
position_mask_2 = handbuild_roo['Position'].apply(lambda x: any(pos in x for pos in pos_select3))
player_select_df = player_select_df[position_mask_2][['Player', 'Position', 'Team', 'Team_Total', 'Opp_Total', 'Salary', 'Median', '2x%', 'Order', 'Hand', 'Own%']].drop_duplicates(subset=['Player', 'Team']).sort_values(by='Order', ascending=True).copy()
else:
player_select_df = player_select_df[['Player', 'Position', 'Team', 'Team_Total', 'Opp_Total', 'Salary', 'Median', '2x%', 'Order', 'Hand', 'Own%']].drop_duplicates(subset=['Player', 'Team']).copy()
player_select_df = player_select_df[player_select_df['Salary'] <= salary_var]
with st.expander("Quick Fill Options"):
auto_team_var = st.selectbox("Auto Fill Team", options=all_teams)
auto_size_var = st.selectbox("Auto Fill Size", options=[3, 4, 5])
auto_range_var = st.selectbox("Auto Fill Order", options=['Top (1-5)', 'Mid (4-8)', 'Wrap (7-2)'])
# --- QUICK FILL LOGIC ---
if st.button("Quick Fill", key="quick_fill"):
# 1. Get all eligible players from the selected team, not already in the lineup
current_players = set(st.session_state['handbuilder_lineup']['Player'])
team_players = player_select_df[
(player_select_df['Team'] == auto_team_var) &
(~player_select_df['Player'].isin(current_players))
].copy()
# 2. Sort by Order
team_players = team_players.sort_values(by='Order')
# 3. Select the order range
if auto_range_var == 'Top (1-5)':
selected_players = team_players[team_players['Order'] > 0].head(auto_size_var)
elif auto_range_var == 'Mid (4-8)':
selected_players = team_players[team_players['Order'] > 0].iloc[3:3 + auto_size_var]
elif auto_range_var == 'Wrap (7-2)':
if auto_size_var == 5:
first_three = team_players[team_players['Order'] > 0].head(2)
elif auto_size_var == 4:
first_three = team_players[team_players['Order'] > 0].head(1)
elif auto_size_var == 3:
first_three = team_players[team_players['Order'] > 0].head(0)
last_two = team_players[team_players['Order'] > 0].tail(3)
selected_players = pd.concat([first_three, last_two])
else:
selected_players = team_players[team_players['Order'] > 0].head(auto_size_var)
# 4. Add each player to the lineup, filling the first available eligible slot
for _, player_row in selected_players.iterrows():
eligible_positions = re.split(r'[/, ]+', player_row['Position'])
slot_to_fill = None
if site_var == 'Fanduel':
# Logic for handling Fanduel Positions (with C/1B and UTIL)
for slot in ['P', 'C_1B', '2B', '3B', 'SS', 'OF', 'UTIL']:
if slot_counts.get(slot, 0) < position_limits.get(slot, 0):
if slot == 'C_1B':
if any(pos in eligible_positions for pos in ['C', '1B']):
slot_to_fill = slot
break
elif slot == 'UTIL':
if 'P' not in eligible_positions:
slot_to_fill = slot
break
elif slot in eligible_positions:
slot_to_fill = slot
break
else:
# General logic for handling Draftkings Positions
for pos in eligible_positions:
if slot_counts.get(pos, 0) < position_limits.get(pos, 0):
slot_to_fill = pos
break
if slot_to_fill is not None:
# Avoid duplicates
if player_row['Player'] not in st.session_state['handbuilder_lineup']['Player'].values:
add_row = player_row.copy()
add_row['Slot'] = slot_to_fill
st.session_state['handbuilder_lineup'] = pd.concat(
[st.session_state['handbuilder_lineup'], pd.DataFrame([add_row[[
'Player', 'Order', 'Position', 'Team', 'Team_Total', 'Opp_Total', 'Salary', 'Median', '2x%', 'Own%', 'Slot'
]]])],
ignore_index=True
)
# Update slot_counts for next player
slot_counts[slot_to_fill] = slot_counts.get(slot_to_fill, 0) + 1
st.rerun()
# --- FILTER OUT PLAYERS WHOSE ALL ELIGIBLE POSITIONS ARE FILLED ---
def is_player_eligible(row):
eligible_positions = re.split(r'[/, ]+', row['Position'])
# Player is eligible if at least one of their positions is not at max
for pos in eligible_positions:
if slot_counts.get(pos, 0) < position_limits.get(pos, 0):
return True
return False
# player_select_df = player_select_df[player_select_df.apply(is_player_eligible, axis=1)]
col1, col2 = st.columns([1, 2])
with col2:
st.subheader("Player Select")
event = st.dataframe(
player_select_df.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Order', 'Salary', 'Own%']).format(precision=2),
on_select="rerun",
selection_mode=["single-row"],
key=f"handbuilder_select_{st.session_state['handbuilder_select_key']}",
height=500,
hide_index=True
)
# If a row is selected, add that player to the lineup and reset selection
if event and "rows" in event.selection and len(event.selection["rows"]) > 0:
idx = event.selection["rows"][0]
player_row = player_select_df.iloc[[idx]]
eligible_positions = re.split(r'[/, ]+', player_row['Position'].iloc[0])
# Find the first eligible slot that is not full
slot_to_fill = None
if site_var == 'Fanduel':
# Logic for handling Fanduel Positions (with C/1B and UTIL)
for slot in ['P', 'C_1B', '2B', '3B', 'SS', 'OF', 'UTIL']:
if slot_counts.get(slot, 0) < position_limits.get(slot, 0):
if slot == 'C_1B':
if any(pos in eligible_positions for pos in ['C', '1B']):
slot_to_fill = slot
break
elif slot == 'UTIL':
if 'P' not in eligible_positions:
slot_to_fill = slot
break
elif slot in eligible_positions:
slot_to_fill = slot
break
else:
# General logic for handling Draftkings Positions
for pos in eligible_positions:
if slot_counts.get(pos, 0) < position_limits.get(pos, 0):
slot_to_fill = pos
break
if slot_to_fill is not None:
# Avoid duplicates
if not player_row['Player'].iloc[0] in st.session_state['handbuilder_lineup']['Player'].values:
# Add the slot info
player_row = player_row.assign(Slot=slot_to_fill)
st.session_state['handbuilder_lineup'] = pd.concat(
[st.session_state['handbuilder_lineup'], player_row[['Player', 'Order', 'Position', 'Team', 'Team_Total', 'Opp_Total', 'Salary', 'Median', '2x%', 'Own%', 'Slot']]],
ignore_index=True
)
st.session_state['handbuilder_select_key'] += 1
st.rerun()
with col1:
st.subheader("Lineup Build")
# --- EXPLICIT LINEUP ORDER ---
if site_var == 'Draftkings':
lineup_slots = ['SP', 'SP', 'C', '1B', '2B', '3B', 'SS', 'OF', 'OF', 'OF']
else:
lineup_slots = ['P', 'C_1B', '2B', '3B', 'SS', 'OF', 'OF', 'OF', 'UTIL']
display_columns = ['Slot', 'Player', 'Order', 'Team', 'Salary', 'Median', 'Own%']
filled_lineup = st.session_state['handbuilder_lineup']
display_rows = []
used_indices = set()
if not filled_lineup.empty:
for slot in lineup_slots:
match = filled_lineup[(filled_lineup['Slot'] == slot) & (~filled_lineup.index.isin(used_indices))]
if not match.empty:
row = match.iloc[0]
used_indices.add(match.index[0])
display_rows.append({
'Slot': slot,
'Player': row['Player'],
'Order': row['Order'],
'Position': row['Position'],
'Team': row['Team'],
'Salary': row['Salary'],
'Median': row['Median'],
'2x%': row['2x%'],
'Own%': row['Own%']
})
else:
display_rows.append({
'Slot': slot,
'Player': '',
'Order': np.nan,
'Position': '',
'Team': '',
'Salary': np.nan,
'Median': np.nan,
'2x%': np.nan,
'Own%': np.nan
})
lineup_display_df = pd.DataFrame(display_rows, columns=display_columns)
# Show the lineup table with single-row selection for removal
event_remove = st.dataframe(
lineup_display_df.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn', subset=['Median']).background_gradient(cmap='RdYlGn_r', subset=['Order', 'Salary', 'Own%']).format(precision=2),
on_select="rerun",
selection_mode=["single-row"],
key="lineup_remove",
height=445,
hide_index=True
)
# If a row is selected and not blank, remove that player from the lineup
if event_remove and "rows" in event_remove.selection and len(event_remove.selection["rows"]) > 0:
idx = event_remove.selection["rows"][0]
player_to_remove = lineup_display_df.iloc[idx]['Player']
slot_to_remove = lineup_display_df.iloc[idx]['Slot']
if player_to_remove: # Only remove if not blank
st.session_state['handbuilder_lineup'] = filled_lineup[
~((filled_lineup['Player'] == player_to_remove) & (filled_lineup['Slot'] == slot_to_remove))
]
st.rerun()
# --- SUMMARY ROW ---
if not filled_lineup.empty:
total_salary = filled_lineup['Salary'].sum()
total_median = filled_lineup['Median'].sum()
avg_2x = filled_lineup['2x%'].mean()
total_own = filled_lineup['Own%'].sum()
most_common_team = filled_lineup['Team'].mode()[0] if not filled_lineup['Team'].mode().empty else ""
summary_row = pd.DataFrame({
'Slot': [''],
'Player': ['TOTAL'],
'Order': [''],
'Position': [''],
'Team': [most_common_team],
'Salary': [total_salary],
'Median': [total_median],
'2x%': [avg_2x],
'Own%': [total_own]
})
summary_row = summary_row[['Salary', 'Median', 'Own%']].head(max_players)
col1, col3 = st.columns([2, 3])
with col1:
if (max_players - len(filled_lineup)) > 0:
st.markdown(f"""
<div style='text-align: left; vertical-align: top; margin-top: 0; padding-top: 0;''>
<b>π° Per Player:</b> ${round((max_salary - total_salary) / (max_players - len(filled_lineup)), 0)}
</div>
""",
unsafe_allow_html=True)
else:
st.markdown(f"""
<div style='text-align: left; vertical-align: top; margin-top: 0; padding-top: 0;''>
<b>π° Leftover:</b> ${round(max_salary - total_salary, 0)}
</div>
""",
unsafe_allow_html=True)
with col3:
if total_salary <= max_salary:
st.markdown(
f"""
<div style='text-align: right; vertical-align: top; margin-top: 0; padding-top: 0;''>
<b>π° Salary:</b> ${round(total_salary, 0)}
<b>π₯ Median:</b> {round(total_median, 2)}
</div>
""",
unsafe_allow_html=True
)
else:
st.markdown(
f"""
<div style='text-align: right; vertical-align: top; margin-top: 0; padding-top: 0;''>
<b>β Salary:</b> ${round(total_salary, 0)}
<b>π₯ Median:</b> {round(total_median, 2)}
</div>
""",
unsafe_allow_html=True
)
# Optionally, add a button to clear the lineup
if st.button("Clear Lineup", key='clear_lineup'):
st.session_state['handbuilder_lineup'] = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Team_Total', 'Opp_Total', 'Salary', 'Median', '2x%', 'Own%', 'Slot', 'Order'])
st.rerun() |