Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 HunyuanDiT Authors, Qixun Wang and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Dict, Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.loaders import PeftAdapterMixin | |
from diffusers.models.attention import FeedForward | |
from diffusers.models.attention_processor import Attention, AttentionProcessor | |
from diffusers.models.embeddings import ( | |
GaussianFourierProjection, | |
TimestepEmbedding, | |
Timesteps, | |
) | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.normalization import ( | |
AdaLayerNormContinuous, | |
FP32LayerNorm, | |
LayerNorm, | |
) | |
from diffusers.utils import ( | |
USE_PEFT_BACKEND, | |
is_torch_version, | |
logging, | |
scale_lora_layers, | |
unscale_lora_layers, | |
) | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from torch import nn | |
from ..attention_processor import FusedTripoSGAttnProcessor2_0, TripoSGAttnProcessor2_0 | |
from .modeling_outputs import Transformer1DModelOutput | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class DiTBlock(nn.Module): | |
r""" | |
Transformer block used in Hunyuan-DiT model (https://github.com/Tencent/HunyuanDiT). Allow skip connection and | |
QKNorm | |
Parameters: | |
dim (`int`): | |
The number of channels in the input and output. | |
num_attention_heads (`int`): | |
The number of headsto use for multi-head attention. | |
cross_attention_dim (`int`,*optional*): | |
The size of the encoder_hidden_states vector for cross attention. | |
dropout(`float`, *optional*, defaults to 0.0): | |
The dropout probability to use. | |
activation_fn (`str`,*optional*, defaults to `"geglu"`): | |
Activation function to be used in feed-forward. . | |
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
norm_eps (`float`, *optional*, defaults to 1e-6): | |
A small constant added to the denominator in normalization layers to prevent division by zero. | |
final_dropout (`bool` *optional*, defaults to False): | |
Whether to apply a final dropout after the last feed-forward layer. | |
ff_inner_dim (`int`, *optional*): | |
The size of the hidden layer in the feed-forward block. Defaults to `None`. | |
ff_bias (`bool`, *optional*, defaults to `True`): | |
Whether to use bias in the feed-forward block. | |
skip (`bool`, *optional*, defaults to `False`): | |
Whether to use skip connection. Defaults to `False` for down-blocks and mid-blocks. | |
qk_norm (`bool`, *optional*, defaults to `True`): | |
Whether to use normalization in QK calculation. Defaults to `True`. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
use_self_attention: bool = True, | |
use_cross_attention: bool = False, | |
self_attention_norm_type: Optional[str] = None, # ada layer norm | |
cross_attention_dim: Optional[int] = None, | |
cross_attention_norm_type: Optional[str] = "fp32_layer_norm", | |
# parallel second cross attention | |
use_cross_attention_2: bool = False, | |
cross_attention_2_dim: Optional[int] = None, | |
cross_attention_2_norm_type: Optional[str] = None, | |
dropout=0.0, | |
activation_fn: str = "gelu", | |
norm_type: str = "fp32_layer_norm", # TODO | |
norm_elementwise_affine: bool = True, | |
norm_eps: float = 1e-5, | |
final_dropout: bool = False, | |
ff_inner_dim: Optional[int] = None, # int(dim * 4) if None | |
ff_bias: bool = True, | |
skip: bool = False, | |
skip_concat_front: bool = False, # [x, skip] or [skip, x] | |
skip_norm_last: bool = False, # this is an error | |
qk_norm: bool = True, | |
qkv_bias: bool = True, | |
): | |
super().__init__() | |
self.use_self_attention = use_self_attention | |
self.use_cross_attention = use_cross_attention | |
self.use_cross_attention_2 = use_cross_attention_2 | |
self.skip_concat_front = skip_concat_front | |
self.skip_norm_last = skip_norm_last | |
# Define 3 blocks. Each block has its own normalization layer. | |
# NOTE: when new version comes, check norm2 and norm 3 | |
# 1. Self-Attn | |
if use_self_attention: | |
if ( | |
self_attention_norm_type == "fp32_layer_norm" | |
or self_attention_norm_type is None | |
): | |
self.norm1 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
else: | |
raise NotImplementedError | |
self.attn1 = Attention( | |
query_dim=dim, | |
cross_attention_dim=None, | |
dim_head=dim // num_attention_heads, | |
heads=num_attention_heads, | |
qk_norm="rms_norm" if qk_norm else None, | |
eps=1e-6, | |
bias=qkv_bias, | |
processor=TripoSGAttnProcessor2_0(), | |
) | |
# 2. Cross-Attn | |
if use_cross_attention: | |
assert cross_attention_dim is not None | |
self.norm2 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim, | |
dim_head=dim // num_attention_heads, | |
heads=num_attention_heads, | |
qk_norm="rms_norm" if qk_norm else None, | |
cross_attention_norm=cross_attention_norm_type, | |
eps=1e-6, | |
bias=qkv_bias, | |
processor=TripoSGAttnProcessor2_0(), | |
) | |
# 2'. Parallel Second Cross-Attn | |
if use_cross_attention_2: | |
assert cross_attention_2_dim is not None | |
self.norm2_2 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
self.attn2_2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_2_dim, | |
dim_head=dim // num_attention_heads, | |
heads=num_attention_heads, | |
qk_norm="rms_norm" if qk_norm else None, | |
cross_attention_norm=cross_attention_2_norm_type, | |
eps=1e-6, | |
bias=qkv_bias, | |
processor=TripoSGAttnProcessor2_0(), | |
) | |
# 3. Feed-forward | |
self.norm3 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
self.ff = FeedForward( | |
dim, | |
dropout=dropout, ### 0.0 | |
activation_fn=activation_fn, ### approx GeLU | |
final_dropout=final_dropout, ### 0.0 | |
inner_dim=ff_inner_dim, ### int(dim * mlp_ratio) | |
bias=ff_bias, | |
) | |
# 4. Skip Connection | |
if skip: | |
self.skip_norm = FP32LayerNorm(dim, norm_eps, elementwise_affine=True) | |
self.skip_linear = nn.Linear(2 * dim, dim) | |
else: | |
self.skip_linear = None | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
# Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_hidden_states_2: Optional[torch.Tensor] = None, | |
temb: Optional[torch.Tensor] = None, | |
image_rotary_emb: Optional[torch.Tensor] = None, | |
skip: Optional[torch.Tensor] = None, | |
attention_kwargs: Optional[Dict[str, Any]] = None, | |
) -> torch.Tensor: | |
# Prepare attention kwargs | |
attention_kwargs = attention_kwargs or {} | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 0. Long Skip Connection | |
if self.skip_linear is not None: | |
cat = torch.cat( | |
( | |
[skip, hidden_states] | |
if self.skip_concat_front | |
else [hidden_states, skip] | |
), | |
dim=-1, | |
) | |
if self.skip_norm_last: | |
# don't do this | |
hidden_states = self.skip_linear(cat) | |
hidden_states = self.skip_norm(hidden_states) | |
else: | |
cat = self.skip_norm(cat) | |
hidden_states = self.skip_linear(cat) | |
# 1. Self-Attention | |
if self.use_self_attention: | |
norm_hidden_states = self.norm1(hidden_states) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
image_rotary_emb=image_rotary_emb, | |
**attention_kwargs, | |
) | |
hidden_states = hidden_states + attn_output | |
# 2. Cross-Attention | |
if self.use_cross_attention: | |
if self.use_cross_attention_2: | |
hidden_states = ( | |
hidden_states | |
+ self.attn2( | |
self.norm2(hidden_states), | |
encoder_hidden_states=encoder_hidden_states, | |
image_rotary_emb=image_rotary_emb, | |
**attention_kwargs, | |
) | |
+ self.attn2_2( | |
self.norm2_2(hidden_states), | |
encoder_hidden_states=encoder_hidden_states_2, | |
image_rotary_emb=image_rotary_emb, | |
**attention_kwargs, | |
) | |
) | |
else: | |
hidden_states = hidden_states + self.attn2( | |
self.norm2(hidden_states), | |
encoder_hidden_states=encoder_hidden_states, | |
image_rotary_emb=image_rotary_emb, | |
**attention_kwargs, | |
) | |
# FFN Layer ### TODO: switch norm2 and norm3 in the state dict | |
mlp_inputs = self.norm3(hidden_states) | |
hidden_states = hidden_states + self.ff(mlp_inputs) | |
return hidden_states | |
class TripoSGDiTModel(ModelMixin, ConfigMixin, PeftAdapterMixin): | |
""" | |
TripoSG: Diffusion model with a Transformer backbone. | |
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers. | |
Parameters: | |
num_attention_heads (`int`, *optional*, defaults to 16): | |
The number of heads to use for multi-head attention. | |
attention_head_dim (`int`, *optional*, defaults to 88): | |
The number of channels in each head. | |
in_channels (`int`, *optional*): | |
The number of channels in the input and output (specify if the input is **continuous**). | |
patch_size (`int`, *optional*): | |
The size of the patch to use for the input. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): | |
Activation function to use in feed-forward. | |
sample_size (`int`, *optional*): | |
The width of the latent images. This is fixed during training since it is used to learn a number of | |
position embeddings. | |
dropout (`float`, *optional*, defaults to 0.0): | |
The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): | |
The number of dimension in the clip text embedding. | |
hidden_size (`int`, *optional*): | |
The size of hidden layer in the conditioning embedding layers. | |
num_layers (`int`, *optional*, defaults to 1): | |
The number of layers of Transformer blocks to use. | |
mlp_ratio (`float`, *optional*, defaults to 4.0): | |
The ratio of the hidden layer size to the input size. | |
learn_sigma (`bool`, *optional*, defaults to `True`): | |
Whether to predict variance. | |
cross_attention_dim_t5 (`int`, *optional*): | |
The number dimensions in t5 text embedding. | |
pooled_projection_dim (`int`, *optional*): | |
The size of the pooled projection. | |
text_len (`int`, *optional*): | |
The length of the clip text embedding. | |
text_len_t5 (`int`, *optional*): | |
The length of the T5 text embedding. | |
use_style_cond_and_image_meta_size (`bool`, *optional*): | |
Whether or not to use style condition and image meta size. True for version <=1.1, False for version >= 1.2 | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
num_attention_heads: int = 16, | |
width: int = 2048, | |
in_channels: int = 64, | |
num_layers: int = 21, | |
cross_attention_dim: int = 768, | |
cross_attention_2_dim: int = 1024, | |
): | |
super().__init__() | |
self.out_channels = in_channels | |
self.num_heads = num_attention_heads | |
self.inner_dim = width | |
self.mlp_ratio = 4.0 | |
time_embed_dim, timestep_input_dim = self._set_time_proj( | |
"positional", | |
inner_dim=self.inner_dim, | |
flip_sin_to_cos=False, | |
freq_shift=0, | |
time_embedding_dim=None, | |
) | |
self.time_proj = TimestepEmbedding( | |
timestep_input_dim, time_embed_dim, act_fn="gelu", out_dim=self.inner_dim | |
) | |
self.proj_in = nn.Linear(self.config.in_channels, self.inner_dim, bias=True) | |
self.blocks = nn.ModuleList( | |
[ | |
DiTBlock( | |
dim=self.inner_dim, | |
num_attention_heads=self.config.num_attention_heads, | |
use_self_attention=True, | |
use_cross_attention=True, | |
self_attention_norm_type="fp32_layer_norm", | |
cross_attention_dim=self.config.cross_attention_dim, | |
cross_attention_norm_type=None, | |
use_cross_attention_2=True, | |
cross_attention_2_dim=self.config.cross_attention_2_dim, | |
cross_attention_2_norm_type=None, | |
activation_fn="gelu", | |
norm_type="fp32_layer_norm", # TODO | |
norm_eps=1e-5, | |
ff_inner_dim=int(self.inner_dim * self.mlp_ratio), | |
skip=layer > num_layers // 2, | |
skip_concat_front=True, | |
skip_norm_last=True, # this is an error | |
qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details. | |
qkv_bias=False, | |
) | |
for layer in range(num_layers) | |
] | |
) | |
self.norm_out = LayerNorm(self.inner_dim) | |
self.proj_out = nn.Linear(self.inner_dim, self.out_channels, bias=True) | |
self.gradient_checkpointing = False | |
def _set_gradient_checkpointing(self, module, value=False): | |
self.gradient_checkpointing = value | |
def _set_time_proj( | |
self, | |
time_embedding_type: str, | |
inner_dim: int, | |
flip_sin_to_cos: bool, | |
freq_shift: float, | |
time_embedding_dim: int, | |
) -> Tuple[int, int]: | |
if time_embedding_type == "fourier": | |
time_embed_dim = time_embedding_dim or inner_dim * 2 | |
if time_embed_dim % 2 != 0: | |
raise ValueError( | |
f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}." | |
) | |
self.time_embed = GaussianFourierProjection( | |
time_embed_dim // 2, | |
set_W_to_weight=False, | |
log=False, | |
flip_sin_to_cos=flip_sin_to_cos, | |
) | |
timestep_input_dim = time_embed_dim | |
elif time_embedding_type == "positional": | |
time_embed_dim = time_embedding_dim or inner_dim * 4 | |
self.time_embed = Timesteps(inner_dim, flip_sin_to_cos, freq_shift) | |
timestep_input_dim = inner_dim | |
else: | |
raise ValueError( | |
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`." | |
) | |
return time_embed_dim, timestep_input_dim | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedTripoSGAttnProcessor2_0 | |
def fuse_qkv_projections(self): | |
""" | |
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) | |
are fused. For cross-attention modules, key and value projection matrices are fused. | |
<Tip warning={true}> | |
This API is 🧪 experimental. | |
</Tip> | |
""" | |
self.original_attn_processors = None | |
for _, attn_processor in self.attn_processors.items(): | |
if "Added" in str(attn_processor.__class__.__name__): | |
raise ValueError( | |
"`fuse_qkv_projections()` is not supported for models having added KV projections." | |
) | |
self.original_attn_processors = self.attn_processors | |
for module in self.modules(): | |
if isinstance(module, Attention): | |
module.fuse_projections(fuse=True) | |
self.set_attn_processor(FusedTripoSGAttnProcessor2_0()) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections | |
def unfuse_qkv_projections(self): | |
"""Disables the fused QKV projection if enabled. | |
<Tip warning={true}> | |
This API is 🧪 experimental. | |
</Tip> | |
""" | |
if self.original_attn_processors is not None: | |
self.set_attn_processor(self.original_attn_processors) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors( | |
name: str, | |
module: torch.nn.Module, | |
processors: Dict[str, AttentionProcessor], | |
): | |
if hasattr(module, "get_processor"): | |
processors[f"{name}.processor"] = module.get_processor() | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
def set_attn_processor( | |
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]] | |
): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
def set_default_attn_processor(self): | |
""" | |
Disables custom attention processors and sets the default attention implementation. | |
""" | |
self.set_attn_processor(TripoSGAttnProcessor2_0()) | |
def forward( | |
self, | |
hidden_states: Optional[torch.Tensor], | |
timestep: Union[int, float, torch.LongTensor], | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_hidden_states_2: Optional[torch.Tensor] = None, | |
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
attention_kwargs: Optional[Dict[str, Any]] = None, | |
return_dict: bool = True, | |
): | |
""" | |
The [`HunyuanDiT2DModel`] forward method. | |
Args: | |
hidden_states (`torch.Tensor` of shape `(batch size, dim, height, width)`): | |
The input tensor. | |
timestep ( `torch.LongTensor`, *optional*): | |
Used to indicate denoising step. | |
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
Conditional embeddings for cross attention layer. | |
encoder_hidden_states_2 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
Conditional embeddings for cross attention layer. | |
return_dict: bool | |
Whether to return a dictionary. | |
""" | |
if attention_kwargs is not None: | |
attention_kwargs = attention_kwargs.copy() | |
lora_scale = attention_kwargs.pop("scale", 1.0) | |
else: | |
lora_scale = 1.0 | |
if USE_PEFT_BACKEND: | |
# weight the lora layers by setting `lora_scale` for each PEFT layer | |
scale_lora_layers(self, lora_scale) | |
else: | |
if ( | |
attention_kwargs is not None | |
and attention_kwargs.get("scale", None) is not None | |
): | |
logger.warning( | |
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." | |
) | |
_, N, _ = hidden_states.shape | |
temb = self.time_embed(timestep).to(hidden_states.dtype) | |
temb = self.time_proj(temb) | |
temb = temb.unsqueeze(dim=1) # unsqueeze to concat with hidden_states | |
hidden_states = self.proj_in(hidden_states) | |
# N + 1 token | |
hidden_states = torch.cat([temb, hidden_states], dim=1) | |
skips = [] | |
for layer, block in enumerate(self.blocks): | |
skip = None if layer <= self.config.num_layers // 2 else skips.pop() | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = ( | |
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
encoder_hidden_states, | |
encoder_hidden_states_2, | |
temb, | |
image_rotary_emb, | |
skip, | |
attention_kwargs, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states = block( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_hidden_states_2=encoder_hidden_states_2, | |
temb=temb, | |
image_rotary_emb=image_rotary_emb, | |
skip=skip, | |
attention_kwargs=attention_kwargs, | |
) # (N, L, D) | |
if layer < self.config.num_layers // 2: | |
skips.append(hidden_states) | |
# final layer | |
hidden_states = self.norm_out(hidden_states) | |
hidden_states = hidden_states[:, -N:] | |
hidden_states = self.proj_out(hidden_states) | |
if USE_PEFT_BACKEND: | |
# remove `lora_scale` from each PEFT layer | |
unscale_lora_layers(self, lora_scale) | |
if not return_dict: | |
return (hidden_states,) | |
return Transformer1DModelOutput(sample=hidden_states) | |
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking | |
def enable_forward_chunking( | |
self, chunk_size: Optional[int] = None, dim: int = 0 | |
) -> None: | |
""" | |
Sets the attention processor to use [feed forward | |
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). | |
Parameters: | |
chunk_size (`int`, *optional*): | |
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually | |
over each tensor of dim=`dim`. | |
dim (`int`, *optional*, defaults to `0`): | |
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) | |
or dim=1 (sequence length). | |
""" | |
if dim not in [0, 1]: | |
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") | |
# By default chunk size is 1 | |
chunk_size = chunk_size or 1 | |
def fn_recursive_feed_forward( | |
module: torch.nn.Module, chunk_size: int, dim: int | |
): | |
if hasattr(module, "set_chunk_feed_forward"): | |
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) | |
for child in module.children(): | |
fn_recursive_feed_forward(child, chunk_size, dim) | |
for module in self.children(): | |
fn_recursive_feed_forward(module, chunk_size, dim) | |
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking | |
def disable_forward_chunking(self): | |
def fn_recursive_feed_forward( | |
module: torch.nn.Module, chunk_size: int, dim: int | |
): | |
if hasattr(module, "set_chunk_feed_forward"): | |
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) | |
for child in module.children(): | |
fn_recursive_feed_forward(child, chunk_size, dim) | |
for module in self.children(): | |
fn_recursive_feed_forward(module, None, 0) | |