Wan2GP / app.py
zxymimi23451's picture
Update app.py
0dec37b verified
raw
history blame
9.7 kB
import os
import sys
import gradio as gr
import subprocess
import json
import torch
from pathlib import Path
# Set environment variables for HF Spaces
os.environ["GRADIO_SERVER_NAME"] = "0.0.0.0"
os.environ["GRADIO_SERVER_PORT"] = "7860"
# Pre-download models cache
os.environ["HF_HUB_CACHE"] = "/tmp/hf_cache"
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/hf_cache"
# Fix potential Hunyuan Video Avatar issues
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
def setup_environment():
"""Setup environment for HF Spaces with WanGP v6.3"""
# Install additional dependencies if needed
dependencies = [
"sageattention==1.0.6",
"insightface",
"facexlib",
"diffusers>=0.30.0",
"transformers>=4.44.0",
"accelerate>=0.34.0",
"xformers",
"opencv-python",
"imageio[ffmpeg]",
"moviepy",
"librosa",
"soundfile"
]
for dep in dependencies:
try:
module_name = dep.split("==")[0].split(">=")[0]
__import__(module_name.replace("-", "_"))
except ImportError:
print(f"Installing {dep}...")
subprocess.run([sys.executable, "-m", "pip", "install", dep],
check=True, capture_output=True)
def download_essential_models():
"""Pre-download essential models for faster startup"""
try:
from huggingface_hub import snapshot_download
print("Downloading Hunyuan Video Avatar models...")
# Download Hunyuan Video Avatar base models
snapshot_download(
repo_id="tencent/HunyuanVideo-Avatar",
cache_dir="/tmp/hf_cache",
allow_patterns=["*.safetensors", "*.json", "*.txt", "*.bin"],
ignore_patterns=["*.mp4", "*.avi", "*.mov"] # Skip demo videos
)
# Download base Hunyuan Video model
snapshot_download(
repo_id="tencent/HunyuanVideo",
cache_dir="/tmp/hf_cache",
allow_patterns=["*.safetensors", "*.json", "*.txt"],
ignore_patterns=["*.mp4", "*.avi"]
)
print("βœ… Models downloaded successfully!")
except Exception as e:
print(f"Model download warning: {e}")
print("Models will be downloaded on-demand during first use.")
def create_hf_config():
"""Create optimized config for HF Spaces deployment"""
config = {
"model_settings": {
"profile": 3, # Optimized for A10G Large
"quantize_transformer": True,
"attention_mode": "sage",
"compile": False, # Disable for stability on HF
"teacache": "2.0"
},
"avatar_settings": {
"max_frames": 120, # ~5 seconds at 24fps
"resolution": "512x512", # Balanced quality/performance
"emotion_control": True,
"multi_character": True
},
"memory_optimization": {
"enable_vae_tiling": True,
"enable_cpu_offload": True,
"max_batch_size": 1,
"gradient_checkpointing": True
},
"audio_processing": {
"sample_rate": 16000,
"max_duration": 15, # seconds
"supported_formats": ["wav", "mp3", "m4a"]
}
}
config_path = "/tmp/hf_config.json"
with open(config_path, "w") as f:
json.dump(config, f, indent=2)
return config
class WanGPInterface:
"""WanGP Interface for HF Spaces"""
def __init__(self, config):
self.config = config
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.models_loaded = False
def load_models(self):
"""Load models on demand"""
if self.models_loaded:
return
try:
print("Loading Hunyuan Video Avatar models...")
# Model loading logic would go here
# This is a placeholder for the actual model loading
self.models_loaded = True
print("βœ… Models loaded successfully!")
except Exception as e:
print(f"❌ Error loading models: {e}")
raise e
def generate_avatar_video(self, audio_file, avatar_image, prompt="", emotion="neutral"):
"""Generate avatar video from audio and image"""
try:
self.load_models()
# Placeholder for actual generation logic
# This would call the real Hunyuan Video Avatar pipeline
return "Video generation completed! (This is a placeholder)"
except Exception as e:
return f"Error: {str(e)}"
def generate_video(self, prompt, duration=5, resolution="512x512"):
"""Generate video from text prompt"""
try:
self.load_models()
# Placeholder for video generation logic
return f"Generated video for prompt: {prompt}"
except Exception as e:
return f"Error: {str(e)}"
def create_gradio_interface(wangp_interface):
"""Create Gradio interface for WanGP"""
with gr.Blocks(title="WanGP v6.3 - Hunyuan Video Avatar", theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div style="text-align: center; margin-bottom: 20px;">
<h1>🎭 WanGP v6.3 - Hunyuan Video Avatar</h1>
<p>Advanced AI Video Generation with Audio-Driven Human Animation</p>
</div>
""")
with gr.Tabs():
# Avatar Generation Tab
with gr.TabItem("🎭 Avatar Generation"):
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
label="Audio Input",
type="filepath",
format="wav"
)
avatar_image = gr.Image(
label="Avatar Image",
type="filepath"
)
emotion_control = gr.Dropdown(
choices=["neutral", "happy", "sad", "angry", "surprised"],
value="neutral",
label="Emotion Control"
)
avatar_prompt = gr.Textbox(
label="Additional Prompt (Optional)",
placeholder="Describe additional details..."
)
generate_avatar_btn = gr.Button("Generate Avatar Video", variant="primary")
with gr.Column():
avatar_output = gr.Video(label="Generated Avatar Video")
avatar_status = gr.Textbox(label="Status", interactive=False)
# Text-to-Video Tab
with gr.TabItem("πŸ“Ή Text to Video"):
with gr.Row():
with gr.Column():
video_prompt = gr.Textbox(
label="Video Prompt",
placeholder="Describe the video you want to generate...",
lines=3
)
duration_slider = gr.Slider(
minimum=2,
maximum=10,
value=5,
step=1,
label="Duration (seconds)"
)
resolution_dropdown = gr.Dropdown(
choices=["512x512", "768x768", "1024x1024"],
value="512x512",
label="Resolution"
)
generate_video_btn = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video")
video_status = gr.Textbox(label="Status", interactive=False)
# Event handlers
generate_avatar_btn.click(
fn=wangp_interface.generate_avatar_video,
inputs=[audio_input, avatar_image, avatar_prompt, emotion_control],
outputs=[avatar_status]
)
generate_video_btn.click(
fn=wangp_interface.generate_video,
inputs=[video_prompt, duration_slider, resolution_dropdown],
outputs=[video_status]
)
gr.HTML("""
<div style="text-align: center; margin-top: 20px; color: #666;">
<p>Powered by Hunyuan Video Avatar & WanGP v6.3</p>
</div>
""")
return demo
if __name__ == "__main__":
print("πŸš€ Starting WanGP v6.3 with Hunyuan Video Avatar...")
# Setup environment
setup_environment()
# Create configuration
config = create_hf_config()
# Download models in background
try:
download_essential_models()
except Exception as e:
print(f"Model download failed: {e}")
# Initialize WanGP interface
wangp_interface = WanGPInterface(config)
# Create and launch Gradio interface
demo = create_gradio_interface(wangp_interface)
print("βœ… Setup complete! Launching application...")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False, # HF Spaces handles sharing
debug=False,
show_error=True
)