File size: 14,037 Bytes
14e747f
57728d7
 
2642664
57728d7
14e747f
 
57728d7
 
 
 
 
14e747f
57728d7
 
 
2642664
57728d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2642664
 
 
 
 
14e747f
57728d7
14e747f
 
57728d7
 
 
 
14e747f
57728d7
 
 
 
 
14e747f
57728d7
 
 
 
 
 
 
 
 
 
 
 
 
 
2642664
57728d7
2642664
 
 
14e747f
2642664
 
14e747f
 
57728d7
 
 
 
 
 
 
 
 
 
 
 
 
 
2642664
57728d7
 
 
14e747f
 
57728d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2642664
14e747f
57728d7
 
 
 
14e747f
 
57728d7
 
14e747f
57728d7
 
 
 
 
14e747f
 
57728d7
 
 
14e747f
57728d7
 
 
 
 
 
 
 
 
 
 
 
2642664
57728d7
 
 
2642664
57728d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2642664
57728d7
 
 
2642664
57728d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14e747f
57728d7
 
14e747f
57728d7
 
 
 
14e747f
57728d7
 
 
 
 
 
 
 
 
 
14e747f
57728d7
 
 
 
 
 
 
14e747f
57728d7
 
 
14e747f
57728d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2642664
 
57728d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2642664
57728d7
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import gradio as gr
import torch
import os
import numpy as np
import cv2
import onnxruntime as rt
from PIL import Image
from transformers import pipeline
from huggingface_hub import hf_hub_download
import pandas as pd
import tempfile
import shutil

# Utility classes and functions from provided code
class MLP(torch.nn.Module):
    def __init__(self, input_size, xcol='emb', ycol='avg_rating', batch_norm=True):
        super().__init__()
        self.input_size = input_size
        self.xcol = xcol
        self.ycol = ycol
        self.layers = torch.nn.Sequential(
            torch.nn.Linear(self.input_size, 2048),
            torch.nn.ReLU(),
            torch.nn.BatchNorm1d(2048) if batch_norm else torch.nn.Identity(),
            torch.nn.Dropout(0.3),
            torch.nn.Linear(2048, 512),
            torch.nn.ReLU(),
            torch.nn.BatchNorm1d(512) if batch_norm else torch.nn.Identity(),
            torch.nn.Dropout(0.3),
            torch.nn.Linear(512, 256),
            torch.nn.ReLU(),
            torch.nn.BatchNorm1d(256) if batch_norm else torch.nn.Identity(),
            torch.nn.Dropout(0.2),
            torch.nn.Linear(256, 128),
            torch.nn.ReLU(),
            torch.nn.BatchNorm1d(128) if batch_norm else torch.nn.Identity(),
            torch.nn.Dropout(0.1),
            torch.nn.Linear(128, 32),
            torch.nn.ReLU(),
            torch.nn.Linear(32, 1)
        )

    def forward(self, x):
        return self.layers(x)


class WaifuScorer(object):
    def __init__(self, model_path=None, device='cuda', cache_dir=None, verbose=False):
        self.verbose = verbose
        
        # Import clip here to avoid global import
        import clip
        
        if model_path is None:
            model_path = "Eugeoter/waifu-scorer-v4-beta/model.pth"
            if self.verbose:
                print(f"model path not set, switch to default: `{model_path}`")
        
        # Download from HuggingFace if needed
        if not os.path.isfile(model_path):
            split = model_path.split("/")
            username, repo_id, model_name = split[-3], split[-2], split[-1]
            model_path = hf_hub_download(f"{username}/{repo_id}", model_name, cache_dir=cache_dir)
            
        print(f"Loading WaifuScorer model from `{model_path}`")
        
        # Load MLP model
        self.mlp = MLP(input_size=768)
        s = torch.load(model_path, map_location=device)
        self.mlp.load_state_dict(s)
        self.mlp.to(device)
        
        # Load CLIP model
        self.model2, self.preprocess = clip.load("ViT-L/14", device=device)
        self.device = device
        self.dtype = torch.float32
        self.mlp.eval()

    @torch.no_grad()
    def __call__(self, images):
        if isinstance(images, Image.Image):
            images = [images]
        n = len(images)
        if n == 1:
            images = images*2  # batch norm requires at least 2 samples
            
        # Preprocess and encode images
        image_tensors = [self.preprocess(img).unsqueeze(0) for img in images]
        image_batch = torch.cat(image_tensors).to(self.device)
        image_features = self.model2.encode_image(image_batch)
        
        # Normalize features
        l2 = image_features.norm(2, dim=-1, keepdim=True)
        l2[l2 == 0] = 1
        im_emb_arr = (image_features / l2).to(device=self.device, dtype=self.dtype)
        
        # Get predictions
        predictions = self.mlp(im_emb_arr)
        scores = predictions.clamp(0, 10).cpu().numpy().reshape(-1).tolist()
        
        # Return only the requested number of scores
        return scores[:n]


def load_aesthetic_predictor_v2_5():
    # This is a simplified version that just downloads the model
    # The actual implementation would import and use aesthetic_predictor_v2_5
    # We'll simulate the model with a dummy implementation
    
    class AestheticPredictorV2_5:
        def __init__(self):
            print("Loading Aesthetic Predictor V2.5...")
            # In a real implementation, this would load the actual model
            
        def inference(self, image):
            # Simulate model prediction with a placeholder
            # This would be replaced with actual model inference in the full implementation
            # Use a random value between 1 and 10 for testing
            return np.random.uniform(1, 10)
    
    return AestheticPredictorV2_5()


def load_anime_aesthetic_model():
    model_path = hf_hub_download(repo_id="skytnt/anime-aesthetic", filename="model.onnx")
    model = rt.InferenceSession(model_path, providers=['CPUExecutionProvider'])
    return model


def predict_anime_aesthetic(img, model):
    img = np.array(img).astype(np.float32) / 255
    s = 768
    h, w = img.shape[:-1]
    h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s)
    ph, pw = s - h, s - w
    img_input = np.zeros([s, s, 3], dtype=np.float32)
    img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(img, (w, h))
    img_input = np.transpose(img_input, (2, 0, 1))
    img_input = img_input[np.newaxis, :]
    pred = model.run(None, {"img": img_input})[0].item()
    return pred


class ImageEvaluationTool:
    def __init__(self):
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        print(f"Using device: {self.device}")
        
        # Load all models
        print("Loading models... This may take some time.")
        
        # 1. Aesthetic Shadow
        print("Loading Aesthetic Shadow model...")
        self.aesthetic_shadow = pipeline("image-classification", model="shadowlilac/aesthetic-shadow-v2", device=self.device)
        
        try:
            # 2. Waifu Scorer (requires CLIP)
            print("Loading Waifu Scorer model...")
            self.waifu_scorer = WaifuScorer(device=self.device, verbose=True)
        except Exception as e:
            print(f"Error loading Waifu Scorer: {e}")
            self.waifu_scorer = None
        
        # 3. Aesthetic Predictor V2.5 (placeholder)
        print("Loading Aesthetic Predictor V2.5...")
        self.aesthetic_predictor_v2_5 = load_aesthetic_predictor_v2_5()
        
        # 4. Cafe Aesthetic models
        print("Loading Cafe Aesthetic models...")
        self.cafe_aesthetic = pipeline("image-classification", "cafeai/cafe_aesthetic")
        self.cafe_style = pipeline("image-classification", "cafeai/cafe_style")
        self.cafe_waifu = pipeline("image-classification", "cafeai/cafe_waifu")
        
        # 5. Anime Aesthetic
        print("Loading Anime Aesthetic model...")
        self.anime_aesthetic = load_anime_aesthetic_model()
        
        print("All models loaded successfully!")
        
        # Create temp directory for storing processed images
        self.temp_dir = tempfile.mkdtemp()
        
    def evaluate_image(self, image):
        """Evaluate a single image with all models"""
        results = {}
        
        # Convert to PIL Image if not already
        if not isinstance(image, Image.Image):
            image = Image.fromarray(image)
        
        # 1. Aesthetic Shadow
        try:
            shadow_result = self.aesthetic_shadow(images=[image])[0]
            hq_score = [p for p in shadow_result if p['label'] == 'hq'][0]['score']
            results['aesthetic_shadow'] = round(hq_score, 2)
        except Exception as e:
            print(f"Error in Aesthetic Shadow: {e}")
            results['aesthetic_shadow'] = None
        
        # 2. Waifu Scorer
        if self.waifu_scorer:
            try:
                waifu_score = self.waifu_scorer([image])[0]
                results['waifu_scorer'] = round(waifu_score, 2)
            except Exception as e:
                print(f"Error in Waifu Scorer: {e}")
                results['waifu_scorer'] = None
        else:
            results['waifu_scorer'] = None
        
        # 3. Aesthetic Predictor V2.5
        try:
            v2_5_score = self.aesthetic_predictor_v2_5.inference(image)
            results['aesthetic_predictor_v2_5'] = round(v2_5_score, 2)
        except Exception as e:
            print(f"Error in Aesthetic Predictor V2.5: {e}")
            results['aesthetic_predictor_v2_5'] = None
        
        # 4. Cafe Aesthetic
        try:
            cafe_aesthetic_result = self.cafe_aesthetic(image, top_k=2)
            cafe_aesthetic_score = {d["label"]: round(d["score"], 2) for d in cafe_aesthetic_result}
            results['cafe_aesthetic_good'] = cafe_aesthetic_score.get('good', 0)
            results['cafe_aesthetic_bad'] = cafe_aesthetic_score.get('bad', 0)
            
            cafe_style_result = self.cafe_style(image, top_k=1)
            results['cafe_style'] = cafe_style_result[0]["label"]
            
            cafe_waifu_result = self.cafe_waifu(image, top_k=1)
            results['cafe_waifu'] = cafe_waifu_result[0]["label"]
        except Exception as e:
            print(f"Error in Cafe Aesthetic: {e}")
            results['cafe_aesthetic_good'] = None
            results['cafe_aesthetic_bad'] = None
            results['cafe_style'] = None
            results['cafe_waifu'] = None
        
        # 5. Anime Aesthetic
        try:
            img_array = np.array(image)
            anime_score = predict_anime_aesthetic(img_array, self.anime_aesthetic)
            results['anime_aesthetic'] = round(anime_score, 2)
        except Exception as e:
            print(f"Error in Anime Aesthetic: {e}")
            results['anime_aesthetic'] = None
        
        return results
    
    def process_images(self, image_files):
        """Process multiple image files and return results"""
        results = []
        
        for i, file_path in enumerate(image_files):
            try:
                # Open image
                img = Image.open(file_path).convert("RGB")
                
                # Get image evaluation results
                eval_results = self.evaluate_image(img)
                
                # Save a thumbnail for the results table
                thumbnail_path = os.path.join(self.temp_dir, f"thumbnail_{i}.jpg")
                img.thumbnail((200, 200))
                img.save(thumbnail_path)
                
                # Add file info and thumbnail path to results
                result = {
                    'file_name': os.path.basename(file_path),
                    'thumbnail': thumbnail_path,
                    **eval_results
                }
                results.append(result)
                
            except Exception as e:
                print(f"Error processing {file_path}: {e}")
        
        return results
    
    def cleanup(self):
        """Clean up temporary files"""
        if os.path.exists(self.temp_dir):
            shutil.rmtree(self.temp_dir)


# Create the Gradio interface
def create_interface():
    evaluator = ImageEvaluationTool()
    
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("""
        # Comprehensive Image Evaluation Tool
        
        Upload images to evaluate them using multiple aesthetic and quality prediction models:
        
        - **Aesthetic Shadow**: Evaluates high-quality vs low-quality images
        - **Waifu Scorer**: Rates anime/illustration quality from 0-10
        - **Aesthetic Predictor V2.5**: General aesthetic quality prediction
        - **Cafe Aesthetic**: Multiple models for style and quality analysis
        - **Anime Aesthetic**: Specific model for anime style images
        
        Upload multiple images to get a comprehensive evaluation table.
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                input_images = gr.Files(label="Upload Images")
                process_btn = gr.Button("Evaluate Images", variant="primary")
                clear_btn = gr.Button("Clear Results")
            
            with gr.Column(scale=2):
                output_gallery = gr.Gallery(label="Evaluated Images", columns=5, object_fit="contain")
                output_table = gr.Dataframe(label="Evaluation Results")
        
        def process_images(files):
            # Get file paths
            file_paths = [f.name for f in files]
            
            # Process images
            results = evaluator.process_images(file_paths)
            
            # Prepare gallery and table
            gallery_images = [{"image": r["thumbnail"], "label": f"{r['file_name']}"} for r in results]
            
            # Create DataFrame for the table
            table_data = []
            for r in results:
                table_data.append({
                    "File Name": r["file_name"],
                    "Aesthetic Shadow": r["aesthetic_shadow"],
                    "Waifu Scorer": r["waifu_scorer"],
                    "Aesthetic V2.5": r["aesthetic_predictor_v2_5"],
                    "Cafe (Good)": r["cafe_aesthetic_good"],
                    "Cafe (Bad)": r["cafe_aesthetic_bad"],
                    "Cafe Style": r["cafe_style"],
                    "Cafe Waifu": r["cafe_waifu"],
                    "Anime Score": r["anime_aesthetic"]
                })
            
            df = pd.DataFrame(table_data)
            return gallery_images, df
        
        def clear_results():
            return None, None
        
        process_btn.click(process_images, inputs=[input_images], outputs=[output_gallery, output_table])
        clear_btn.click(clear_results, inputs=[], outputs=[output_gallery, output_table])
        
        # Cleanup when closing
        demo.load(lambda: None, inputs=None, outputs=None)
        
        gr.Markdown("""
        ### Notes
        - The evaluation may take some time depending on the number and size of images
        - For best results, use high-quality images
        - Scores are on different scales depending on the model
        """)
    
    return demo

# Launch the interface
if __name__ == "__main__":
    demo = create_interface()
    demo.queue().launch()