File size: 32,750 Bytes
57728d7 d924e11 57728d7 d924e11 14e747f d924e11 57728d7 8ffbf61 14e747f d924e11 57728d7 d924e11 2642664 57728d7 2642664 d924e11 2642664 d924e11 14e747f d924e11 8ffbf61 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 8ffbf61 2642664 14e747f 8ffbf61 d924e11 2642664 14e747f d924e11 14e747f d924e11 8ffbf61 57728d7 d924e11 2642664 8ffbf61 14e747f d924e11 57728d7 d924e11 57728d7 8ffbf61 d924e11 2642664 d924e11 8ffbf61 14e747f 57728d7 d924e11 57728d7 d924e11 14e747f 57728d7 d924e11 14e747f d924e11 57728d7 d924e11 57728d7 d924e11 57728d7 8ffbf61 d924e11 57728d7 24404d4 8ffbf61 57728d7 d924e11 57728d7 8ffbf61 57728d7 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 57728d7 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 57728d7 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 8ffbf61 57728d7 d924e11 57728d7 2642664 d924e11 8ffbf61 d924e11 57728d7 d924e11 8ffbf61 57728d7 8ffbf61 d924e11 57728d7 8ffbf61 57728d7 d924e11 57728d7 d924e11 8ffbf61 57728d7 d924e11 8ffbf61 d924e11 57728d7 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 8ffbf61 d924e11 57728d7 d924e11 57728d7 8ffbf61 57728d7 2642664 57728d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
import os
import shutil
import tempfile
import base64
import asyncio
from io import BytesIO
import cv2
import numpy as np
import torch
import onnxruntime as rt
from PIL import Image
import gradio as gr
from transformers import pipeline
from huggingface_hub import hf_hub_download
# Import necessary function from aesthetic_predictor_v2_5
from aesthetic_predictor_v2_5 import convert_v2_5_from_siglip
#####################################
# Model Definitions #
#####################################
class MLP(torch.nn.Module):
"""A simple multi-layer perceptron for image feature regression."""
def __init__(self, input_size: int, batch_norm: bool = True):
super().__init__()
self.input_size = input_size
self.layers = torch.nn.Sequential(
torch.nn.Linear(self.input_size, 2048),
torch.nn.ReLU(),
torch.nn.BatchNorm1d(2048) if batch_norm else torch.nn.Identity(),
torch.nn.Dropout(0.3),
torch.nn.Linear(2048, 512),
torch.nn.ReLU(),
torch.nn.BatchNorm1d(512) if batch_norm else torch.nn.Identity(),
torch.nn.Dropout(0.3),
torch.nn.Linear(512, 256),
torch.nn.ReLU(),
torch.nn.BatchNorm1d(256) if batch_norm else torch.nn.Identity(),
torch.nn.Dropout(0.2),
torch.nn.Linear(256, 128),
torch.nn.ReLU(),
torch.nn.BatchNorm1d(128) if batch_norm else torch.nn.Identity(),
torch.nn.Dropout(0.1),
torch.nn.Linear(128, 32),
torch.nn.ReLU(),
torch.nn.Linear(32, 1)
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.layers(x)
class WaifuScorer:
"""WaifuScorer model that uses CLIP for feature extraction and a custom MLP for scoring."""
def __init__(self, model_path: str = None, device: str = 'cuda', cache_dir: str = None, verbose: bool = False):
self.verbose = verbose
self.device = device
self.dtype = torch.float32
self.available = False
try:
import clip # local import to avoid dependency issues
# Set default model path if not provided
if model_path is None:
model_path = "Eugeoter/waifu-scorer-v3/model.pth"
if self.verbose:
print(f"Model path not provided. Using default: {model_path}")
# Download model if not found locally
if not os.path.isfile(model_path):
username, repo_id, model_name = model_path.split("/")[-3:]
model_path = hf_hub_download(f"{username}/{repo_id}", model_name, cache_dir=cache_dir)
if self.verbose:
print(f"Loading WaifuScorer model from: {model_path}")
# Initialize MLP model
self.mlp = MLP(input_size=768)
# Load state dict
if model_path.endswith(".safetensors"):
from safetensors.torch import load_file
state_dict = load_file(model_path)
else:
state_dict = torch.load(model_path, map_location=device)
self.mlp.load_state_dict(state_dict)
self.mlp.to(device)
self.mlp.eval()
# Load CLIP model for image preprocessing and feature extraction
self.clip_model, self.preprocess = clip.load("ViT-L/14", device=device)
self.available = True
except Exception as e:
print(f"Unable to initialize WaifuScorer: {e}")
@torch.no_grad()
def __call__(self, images):
if not self.available:
return [None] * (len(images) if isinstance(images, list) else 1)
if isinstance(images, Image.Image):
images = [images]
n = len(images)
# Ensure at least two images for CLIP model compatibility
if n == 1:
images = images * 2
image_tensors = [self.preprocess(img).unsqueeze(0) for img in images]
image_batch = torch.cat(image_tensors).to(self.device)
image_features = self.clip_model.encode_image(image_batch)
# Normalize features
norm = image_features.norm(2, dim=-1, keepdim=True)
norm[norm == 0] = 1
im_emb = (image_features / norm).to(device=self.device, dtype=self.dtype)
predictions = self.mlp(im_emb)
scores = predictions.clamp(0, 10).cpu().numpy().reshape(-1).tolist()
return scores[:n]
#####################################
# Aesthetic Predictor Functions #
#####################################
def load_aesthetic_predictor_v2_5():
"""Load and return an instance of Aesthetic Predictor V2.5 with batch processing support."""
class AestheticPredictorV2_5_Impl:
def __init__(self):
print("Loading Aesthetic Predictor V2.5...")
self.model, self.preprocessor = convert_v2_5_from_siglip(
low_cpu_mem_usage=True,
trust_remote_code=True,
)
if torch.cuda.is_available():
self.model = self.model.to(torch.bfloat16).cuda()
def inference(self, image):
if isinstance(image, list):
images_rgb = [img.convert("RGB") for img in image]
pixel_values = self.preprocessor(images=images_rgb, return_tensors="pt").pixel_values
if torch.cuda.is_available():
pixel_values = pixel_values.to(torch.bfloat16).cuda()
with torch.inference_mode():
scores = self.model(pixel_values).logits.squeeze().float().cpu().numpy()
if scores.ndim == 0:
scores = np.array([scores])
return scores.tolist()
else:
pixel_values = self.preprocessor(images=image.convert("RGB"), return_tensors="pt").pixel_values
if torch.cuda.is_available():
pixel_values = pixel_values.to(torch.bfloat16).cuda()
with torch.inference_mode():
score = self.model(pixel_values).logits.squeeze().float().cpu().numpy()
return score
return AestheticPredictorV2_5_Impl()
def load_anime_aesthetic_model():
"""Load and return the Anime Aesthetic ONNX model."""
model_path = hf_hub_download(repo_id="skytnt/anime-aesthetic", filename="model.onnx")
return rt.InferenceSession(model_path, providers=['CPUExecutionProvider'])
def predict_anime_aesthetic(img, model):
"""Predict Anime Aesthetic score for a single image."""
img_np = np.array(img).astype(np.float32) / 255.0
s = 768
h, w = img_np.shape[:2]
if h > w:
new_h, new_w = s, int(s * w / h)
else:
new_h, new_w = int(s * h / w), s
resized = cv2.resize(img_np, (new_w, new_h))
# Center the resized image in a square canvas
canvas = np.zeros((s, s, 3), dtype=np.float32)
pad_h = (s - new_h) // 2
pad_w = (s - new_w) // 2
canvas[pad_h:pad_h+new_h, pad_w:pad_w+new_w] = resized
# Prepare input for model
input_tensor = np.transpose(canvas, (2, 0, 1))[np.newaxis, :]
pred = model.run(None, {"img": input_tensor})[0].item()
return pred
#####################################
# Image Evaluation Tool #
#####################################
class ImageEvaluationTool:
"""Evaluation tool to process images through multiple aesthetic models and generate logs and HTML outputs."""
def __init__(self):
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {self.device}")
print("Loading models... This may take some time.")
# Load models with progress logs
print("Loading Aesthetic Shadow model...")
self.aesthetic_shadow = pipeline("image-classification", model="NeoChen1024/aesthetic-shadow-v2-backup", device=self.device)
print("Loading Waifu Scorer model...")
self.waifu_scorer = WaifuScorer(device=self.device, verbose=True)
print("Loading Aesthetic Predictor V2.5...")
self.aesthetic_predictor = load_aesthetic_predictor_v2_5()
print("Loading Anime Aesthetic model...")
self.anime_aesthetic = load_anime_aesthetic_model()
print("All models loaded successfully!")
self.temp_dir = tempfile.mkdtemp()
self.results = [] # Store final results for sorting and display
self.available_models = {
"aesthetic_shadow": {"name": "Aesthetic Shadow", "process": self._process_aesthetic_shadow},
"waifu_scorer": {"name": "Waifu Scorer", "process": self._process_waifu_scorer},
"aesthetic_predictor_v2_5": {"name": "Aesthetic V2.5", "process": self._process_aesthetic_predictor_v2_5},
"anime_aesthetic": {"name": "Anime Score", "process": self._process_anime_aesthetic},
}
def image_to_base64(self, image: Image.Image) -> str:
"""Convert PIL Image to base64 encoded JPEG string."""
buffered = BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
def auto_tune_batch_size(self, images: list) -> int:
"""Automatically determine the optimal batch size for processing."""
batch_size = 1
max_batch = len(images)
test_image = images[0:1]
while batch_size <= max_batch:
try:
if "aesthetic_shadow" in self.available_models and self.available_models["aesthetic_shadow"]['selected']: # Check if model is available and selected
_ = self.aesthetic_shadow(test_image * batch_size)
if "waifu_scorer" in self.available_models and self.available_models["waifu_scorer"]['selected']: # Check if model is available and selected
_ = self.waifu_scorer(test_image * batch_size)
if "aesthetic_predictor_v2_5" in self.available_models and self.available_models["aesthetic_predictor_v2_5"]['selected']: # Check if model is available and selected
_ = self.aesthetic_predictor.inference(test_image * batch_size)
batch_size *= 2
if batch_size > max_batch:
break
except Exception:
break
optimal = max(1, batch_size // 2)
if optimal > 64:
optimal = 64
print("Capped optimal batch size to 64")
print(f"Optimal batch size determined: {optimal}")
return optimal
async def process_images_evaluation_with_logs(self, file_paths: list, auto_batch: bool, manual_batch_size: int, selected_models):
"""Asynchronously process images and yield updates with logs, HTML table, and progress bar."""
self.results = []
log_events = []
images = []
file_names = []
# Update available models based on selection
for model_key in self.available_models:
self.available_models[model_key]['selected'] = model_key in selected_models
total_files = len(file_paths)
log_events.append(f"Starting to load {total_files} images...")
for f in file_paths:
try:
img = Image.open(f).convert("RGB")
images.append(img)
file_names.append(os.path.basename(f))
except Exception as e:
log_events.append(f"Error opening {f}: {e}")
if not images:
log_events.append("No valid images loaded.")
progress_percentage = 0 # Define progress_percentage here for no images case
progress_html = self._generate_progress_html(progress_percentage)
yield ("<p>No images loaded.</p>", "", self._format_logs(log_events), progress_html, manual_batch_size)
return
yield ("<p>Images loaded. Determining batch size...</p>", "", self._format_logs(log_events),
self._generate_progress_html(0), manual_batch_size)
await asyncio.sleep(0.1)
try:
manual_batch_size = int(manual_batch_size) if manual_batch_size is not None else 1
except ValueError:
manual_batch_size = 1
log_events.append("Invalid manual batch size. Defaulting to 1.")
optimal_batch = self.auto_tune_batch_size(images) if auto_batch else manual_batch_size
log_events.append(f"Using batch size: {optimal_batch}")
yield ("<p>Processing images in batches...</p>", "", self._format_logs(log_events),
self._generate_progress_html(0), optimal_batch)
await asyncio.sleep(0.1)
total_images = len(images)
for i in range(0, total_images, optimal_batch):
batch_images = images[i:i+optimal_batch]
batch_file_names = file_names[i:i+optimal_batch]
batch_index = i // optimal_batch + 1
log_events.append(f"Processing batch {batch_index}: images {i+1} to {min(i+optimal_batch, total_images)}")
batch_results = {}
# Aesthetic Shadow processing
if self.available_models['aesthetic_shadow']['selected']:
batch_results['aesthetic_shadow'] = await self._process_aesthetic_shadow(batch_images, log_events)
else:
batch_results['aesthetic_shadow'] = [None] * len(batch_images)
# Waifu Scorer processing
if self.available_models['waifu_scorer']['selected']:
batch_results['waifu_scorer'] = await self._process_waifu_scorer(batch_images, log_events)
else:
batch_results['waifu_scorer'] = [None] * len(batch_images)
# Aesthetic Predictor V2.5 processing
if self.available_models['aesthetic_predictor_v2_5']['selected']:
batch_results['aesthetic_predictor_v2_5'] = await self._process_aesthetic_predictor_v2_5(batch_images, log_events)
else:
batch_results['aesthetic_predictor_v2_5'] = [None] * len(batch_images)
# Anime Aesthetic processing (single image)
if self.available_models['anime_aesthetic']['selected']:
batch_results['anime_aesthetic'] = await self._process_anime_aesthetic(batch_images, log_events)
else:
batch_results['anime_aesthetic'] = [None] * len(batch_images)
# Combine results
for j in range(len(batch_images)):
scores_to_average = []
for model_key in self.available_models:
if self.available_models[model_key]['selected']: # Only consider selected models
score = batch_results[model_key][j]
if score is not None:
scores_to_average.append(score)
final_score = float(np.clip(np.mean(scores_to_average), 0.0, 10.0)) if scores_to_average else None
thumbnail = batch_images[j].copy()
thumbnail.thumbnail((200, 200))
result = {
'file_name': batch_file_names[j],
'img_data': self.image_to_base64(thumbnail), # Keep this for the HTML display
'final_score': final_score,
}
for model_key in self.available_models: # Add model scores to result
if self.available_models[model_key]['selected']:
result[model_key] = batch_results[model_key][j]
self.results.append(result)
self.sort_results() # Sort results after adding new result
progress_percentage = min(100, ((i + len(batch_images)) / total_images) * 100) # Define progress_percentage here
yield (f"<p>Processed batch {batch_index}.</p>", self.generate_html_table(self.results, selected_models), # Update table immediately
self._format_logs(log_events[-10:]), self._generate_progress_html(progress_percentage), optimal_batch)
await asyncio.sleep(0.1)
log_events.append("All images processed.")
self.sort_results() # Final sort after all images processed
html_table = self.generate_html_table(self.results, selected_models) # Pass selected models to final table generation
final_progress = self._generate_progress_html(100)
yield ("<p>All images processed.</p>", html_table,
self._format_logs(log_events[-10:]), final_progress, optimal_batch)
async def _process_aesthetic_shadow(self, batch_images, log_events):
try:
shadow_results = self.aesthetic_shadow(batch_images)
log_events.append("Aesthetic Shadow processed for batch.")
except Exception as e:
log_events.append(f"Error in Aesthetic Shadow: {e}")
shadow_results = [None] * len(batch_images)
aesthetic_shadow_scores = []
for res in shadow_results:
try:
hq_score = next(p for p in res if p['label'] == 'hq')['score']
score = float(np.clip(hq_score * 10.0, 0.0, 10.0))
except Exception:
score = None
aesthetic_shadow_scores.append(score)
log_events.append("Aesthetic Shadow scores computed for batch.")
return aesthetic_shadow_scores
async def _process_waifu_scorer(self, batch_images, log_events):
try:
waifu_scores = self.waifu_scorer(batch_images)
waifu_scores = [float(np.clip(s, 0.0, 10.0)) if s is not None else None for s in waifu_scores]
log_events.append("Waifu Scorer processed for batch.")
except Exception as e:
log_events.append(f"Error in Waifu Scorer: {e}")
waifu_scores = [None] * len(batch_images)
return waifu_scores
async def _process_aesthetic_predictor_v2_5(self, batch_images, log_events):
try:
v2_5_scores = self.aesthetic_predictor.inference(batch_images)
v2_5_scores = [float(np.round(np.clip(s, 0.0, 10.0), 4)) if s is not None else None for s in v2_5_scores]
log_events.append("Aesthetic Predictor V2.5 processed for batch.")
except Exception as e:
log_events.append(f"Error in Aesthetic Predictor V2.5: {e}")
v2_5_scores = [None] * len(batch_images)
return v2_5_scores
async def _process_anime_aesthetic(self, batch_images, log_events):
anime_scores = []
for j, img in enumerate(batch_images):
try:
score = predict_anime_aesthetic(img, self.anime_aesthetic)
anime_scores.append(float(np.clip(score * 10.0, 0.0, 10.0)))
log_events.append(f"Anime Aesthetic processed for image {j + 1}.")
except Exception as e:
log_events.append(f"Error in Anime Aesthetic for image {j + 1}: {e}")
anime_scores.append(None)
return anime_scores
def _generate_progress_html(self, percentage: float) -> str:
"""Generate HTML for a progress bar given a percentage."""
return f"""
<div style="width:100%;background-color:#ddd; border-radius:5px;">
<div style="width:{percentage:.1f}%; background-color:#4CAF50; text-align:center; padding:5px 0; border-radius:5px;">
{percentage:.1f}%
</div>
</div>
"""
def _format_logs(self, logs: list) -> str:
"""Format log events into an HTML string."""
return "<div style='max-height:300px; overflow-y:auto;'>" + "<br>".join(logs) + "</div>"
def sort_results(self, sort_by: str = "Final Score") -> list:
"""Sort results based on the specified column."""
key_map = {
"Final Score": "final_score",
"File Name": "file_name",
"Aesthetic Shadow": "aesthetic_shadow",
"Waifu Scorer": "waifu_scorer",
"Aesthetic V2.5": "aesthetic_predictor_v2_5",
"Anime Score": "anime_aesthetic"
}
key = key_map.get(sort_by, "final_score")
reverse = sort_by != "File Name"
self.results.sort(key=lambda r: r.get(key) if r.get(key) is not None else (-float('inf') if not reverse else float('inf')), reverse=reverse)
return self.results
def generate_html_table(self, results: list, selected_models) -> str:
"""Generate an HTML table to display the evaluation results."""
table_html = """
<style>
.results-table { width: 100%; border-collapse: collapse; margin: 20px 0; font-family: Arial, sans-serif; }
.results-table th, .results-table td { color: #eee; border: 1px solid #ddd; padding: 8px; text-align: center; }
.results-table th { font-weight: bold; }
.results-table tr:nth-child(even) { background-color: transparent; }
.results-table tr:hover { background-color: rgba(255, 255, 255, 0.1); }
.image-preview { max-width: 150px; max-height: 150px; display: block; margin: 0 auto; }
.good-score { color: #0f0; font-weight: bold; }
.bad-score { color: #f00; font-weight: bold; }
.medium-score { color: orange; font-weight: bold; }
</style>
<table class="results-table">
<thead>
<tr>
<th>Image</th>
<th>File Name</th>
"""
visible_models = [] # Keep track of visible model columns
if "aesthetic_shadow" in selected_models:
table_html += "<th>Aesthetic Shadow</th>"
visible_models.append("aesthetic_shadow")
if "waifu_scorer" in selected_models:
table_html += "<th>Waifu Scorer</th>"
visible_models.append("waifu_scorer")
if "aesthetic_predictor_v2_5" in selected_models:
table_html += "<th>Aesthetic V2.5</th>"
visible_models.append("aesthetic_predictor_v2_5")
if "anime_aesthetic" in selected_models:
table_html += "<th>Anime Score</th>"
visible_models.append("anime_aesthetic")
table_html += "<th>Final Score</th>"
table_html += "</tr></thead><tbody>"
for result in results:
table_html += "<tr>"
table_html += f'<td><img src="data:image/jpeg;base64,{result["img_data"]}" class="image-preview"></td>'
table_html += f'<td>{result["file_name"]}</td>'
for model_key in visible_models: # Iterate through visible models only
score = result.get(model_key)
table_html += self._format_score_cell(score)
score = result.get("final_score")
table_html += self._format_score_cell(score)
table_html += "</tr>"
table_html += """</tbody></table>"""
return table_html
def _format_score_cell(self, score):
score_str = f"{score:.4f}" if isinstance(score, (int, float)) else "N/A"
score_class = ""
if isinstance(score, (int, float)):
if score >= 7:
score_class = "good-score"
elif score >= 5:
score_class = "medium-score"
else:
score_class = "bad-score"
return f'<td class="{score_class}">{score_str}</td>'
def cleanup(self):
"""Clean up temporary directories."""
if os.path.exists(self.temp_dir):
shutil.rmtree(self.temp_dir)
#####################################
# Interface #
#####################################
def create_interface():
evaluator = ImageEvaluationTool()
sort_options = ["Final Score", "File Name", "Aesthetic Shadow", "Waifu Scorer", "Aesthetic V2.5", "Anime Score"]
model_options = ["aesthetic_shadow", "waifu_scorer", "aesthetic_predictor_v2_5", "anime_aesthetic"]
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# Comprehensive Image Evaluation Tool
Upload images to evaluate them using multiple aesthetic and quality prediction models.
**New features:**
- **Dynamic Final Score:** Final score recalculates on model selection changes.
- **Model Selection:** Choose which models to use for evaluation.
- **Dynamic Table Updates:** Table updates automatically based on model selection.
- **Automatic Sorting:** Table is automatically sorted by 'Final Score'.
- **Detailed Logs:** See major processing events (limited to the last 10).
- **Progress Bar:** Visual indication of processing status.
- **Asynchronous Updates:** Streaming status and logs during processing.
- **Batch Size Controls:** Choose manual batch size or let the tool auto-detect it.
- **Download Results:** Export the evaluation results as CSV.
""")
with gr.Row():
with gr.Column(scale=1):
input_images = gr.Files(label="Upload Images", file_count="multiple")
model_checkboxes = gr.CheckboxGroup(model_options, label="Select Models", value=model_options, info="Choose models for evaluation.")
auto_batch_checkbox = gr.Checkbox(label="Automatic Batch Size Detection", value=False, info="Enable to automatically determine the optimal batch size.")
batch_size_input = gr.Number(label="Batch Size", value=1, interactive=True, info="Manually specify the batch size if auto-detection is disabled.")
sort_dropdown = gr.Dropdown(sort_options, value="Final Score", label="Sort by", info="Select the column to sort results by.")
process_btn = gr.Button("Evaluate Images", variant="primary")
clear_btn = gr.Button("Clear Results")
download_csv = gr.Button("Download CSV", variant="secondary")
with gr.Column(scale=2):
progress_bar = gr.HTML(label="Progress Bar", value="""
<div style='width:100%;background-color:#ddd;'>
<div style='width:0%;background-color:#4CAF50;padding:5px 0;text-align:center;'>0%</div>
</div>
""")
log_window = gr.HTML(label="Detailed Logs", value="<div style='max-height:300px; overflow-y:auto;'>Logs will appear here...</div>")
status_html = gr.HTML(label="Status")
output_html = gr.HTML(label="Evaluation Results")
download_file_output = gr.File() # Initialize gr.File component without filename
# Function to convert results to CSV format, excluding 'img_data'.
def results_to_csv(selected_models):
import csv
import io
if not evaluator.results:
return None # Return None when no results are available
output = io.StringIO()
fieldnames = ['file_name', 'final_score'] # Base fieldnames
for model_key in selected_models: # Add selected model names as fieldnames
if model_key in selected_models: # Double check if model_key is indeed in selected_models list
fieldnames.append(model_key)
writer = csv.DictWriter(output, fieldnames=fieldnames)
writer.writeheader()
for res in evaluator.results:
row_dict = {'file_name': res['file_name'], 'final_score': res['final_score']} # Base data
for model_key in selected_models: # Add selected model scores
if model_key in selected_models: # Double check before accessing res[model_key]
row_dict[model_key] = res.get(model_key, 'N/A') # Use get with default 'N/A' if model not in result (shouldn't happen but for safety)
writer.writerow(row_dict)
return output.getvalue()
def update_batch_size_interactivity(auto_batch):
return gr.update(interactive=not auto_batch)
async def process_images_and_update(files, auto_batch, manual_batch, selected_models):
file_paths = [f.name for f in files]
async for status, table, logs, progress, updated_batch in evaluator.process_images_evaluation_with_logs(file_paths, auto_batch, manual_batch, selected_models):
yield status, table, logs, progress, gr.update(value=updated_batch, interactive=not auto_batch)
def update_table_sort(sort_by_column, selected_models):
sorted_results = evaluator.sort_results(sort_by_column)
return evaluator.generate_html_table(sorted_results, selected_models)
def update_table_model_selection(selected_models):
# Recalculate final scores based on selected models
for result in evaluator.results:
scores_to_average = []
for model_key in evaluator.available_models:
if model_key in selected_models and evaluator.available_models[model_key]['selected']: # consider only selected models from checkbox group and available_models
score = result.get(model_key)
if score is not None:
scores_to_average.append(score)
final_score = float(np.clip(np.mean(scores_to_average), 0.0, 10.0)) if scores_to_average else None
result['final_score'] = final_score
sorted_results = evaluator.sort_results() # Keep sorting by Final Score when models change
return evaluator.generate_html_table(sorted_results, selected_models)
def clear_results():
evaluator.results = []
return (gr.update(value=""),
gr.update(value=""),
gr.update(value=""),
gr.update(value="""
<div style='width:100%;background-color:#ddd;'>
<div style='width:0%;background-color:#4CAF50;padding:5px 0;text-align:center;'>0%</div>
</div>
"""),
gr.update(value=1))
def download_results_csv_trigger(selected_models): # Changed function name to avoid conflict and clarify purpose
csv_content = results_to_csv(selected_models)
if csv_content is None:
return None # Indicate no file to download
# Create a temporary file to save the CSV data
with tempfile.NamedTemporaryFile(suffix=".csv", delete=False) as tmp_file:
tmp_file.write(csv_content.encode())
temp_file_path = tmp_file.name # Get the path to the temporary file
return temp_file_path # Return the path to the temporary file
auto_batch_checkbox.change(
update_batch_size_interactivity,
inputs=[auto_batch_checkbox],
outputs=[batch_size_input]
)
process_btn.click(
process_images_and_update,
inputs=[input_images, auto_batch_checkbox, batch_size_input, model_checkboxes],
outputs=[status_html, output_html, log_window, progress_bar, batch_size_input]
)
sort_dropdown.change(
update_table_sort,
inputs=[sort_dropdown, model_checkboxes],
outputs=[output_html]
)
model_checkboxes.change( # Added change event for model checkboxes
update_table_model_selection,
inputs=[model_checkboxes],
outputs=[output_html]
)
clear_btn.click(
clear_results,
inputs=[],
outputs=[status_html, output_html, log_window, progress_bar, batch_size_input]
)
download_csv.click(
download_results_csv_trigger, # Call the trigger function
inputs=[model_checkboxes],
outputs=[download_file_output] # Output is now the gr.File component
)
demo.load(lambda: update_table_sort("Final Score", model_options), inputs=None, outputs=[output_html]) # Initial sort and table render
gr.Markdown("""
### Notes
- Select models to use for evaluation using the checkboxes.
- The 'Final Score' recalculates dynamically when models are selected/deselected.
- The table updates automatically when models are selected/deselected and is always sorted by 'Final Score'.
- The log window displays the most recent 10 events.
- The progress bar shows overall processing status.
- When 'Automatic Batch Size Detection' is enabled, the batch size field becomes disabled.
- Use the download button to export your evaluation results as CSV.
""")
return demo
if __name__ == "__main__":
demo = create_interface()
demo.queue().launch() |