CIET / app.py
VOIDER's picture
Update app.py
57728d7 verified
raw
history blame
14 kB
import gradio as gr
import torch
import os
import numpy as np
import cv2
import onnxruntime as rt
from PIL import Image
from transformers import pipeline
from huggingface_hub import hf_hub_download
import pandas as pd
import tempfile
import shutil
# Utility classes and functions from provided code
class MLP(torch.nn.Module):
def __init__(self, input_size, xcol='emb', ycol='avg_rating', batch_norm=True):
super().__init__()
self.input_size = input_size
self.xcol = xcol
self.ycol = ycol
self.layers = torch.nn.Sequential(
torch.nn.Linear(self.input_size, 2048),
torch.nn.ReLU(),
torch.nn.BatchNorm1d(2048) if batch_norm else torch.nn.Identity(),
torch.nn.Dropout(0.3),
torch.nn.Linear(2048, 512),
torch.nn.ReLU(),
torch.nn.BatchNorm1d(512) if batch_norm else torch.nn.Identity(),
torch.nn.Dropout(0.3),
torch.nn.Linear(512, 256),
torch.nn.ReLU(),
torch.nn.BatchNorm1d(256) if batch_norm else torch.nn.Identity(),
torch.nn.Dropout(0.2),
torch.nn.Linear(256, 128),
torch.nn.ReLU(),
torch.nn.BatchNorm1d(128) if batch_norm else torch.nn.Identity(),
torch.nn.Dropout(0.1),
torch.nn.Linear(128, 32),
torch.nn.ReLU(),
torch.nn.Linear(32, 1)
)
def forward(self, x):
return self.layers(x)
class WaifuScorer(object):
def __init__(self, model_path=None, device='cuda', cache_dir=None, verbose=False):
self.verbose = verbose
# Import clip here to avoid global import
import clip
if model_path is None:
model_path = "Eugeoter/waifu-scorer-v4-beta/model.pth"
if self.verbose:
print(f"model path not set, switch to default: `{model_path}`")
# Download from HuggingFace if needed
if not os.path.isfile(model_path):
split = model_path.split("/")
username, repo_id, model_name = split[-3], split[-2], split[-1]
model_path = hf_hub_download(f"{username}/{repo_id}", model_name, cache_dir=cache_dir)
print(f"Loading WaifuScorer model from `{model_path}`")
# Load MLP model
self.mlp = MLP(input_size=768)
s = torch.load(model_path, map_location=device)
self.mlp.load_state_dict(s)
self.mlp.to(device)
# Load CLIP model
self.model2, self.preprocess = clip.load("ViT-L/14", device=device)
self.device = device
self.dtype = torch.float32
self.mlp.eval()
@torch.no_grad()
def __call__(self, images):
if isinstance(images, Image.Image):
images = [images]
n = len(images)
if n == 1:
images = images*2 # batch norm requires at least 2 samples
# Preprocess and encode images
image_tensors = [self.preprocess(img).unsqueeze(0) for img in images]
image_batch = torch.cat(image_tensors).to(self.device)
image_features = self.model2.encode_image(image_batch)
# Normalize features
l2 = image_features.norm(2, dim=-1, keepdim=True)
l2[l2 == 0] = 1
im_emb_arr = (image_features / l2).to(device=self.device, dtype=self.dtype)
# Get predictions
predictions = self.mlp(im_emb_arr)
scores = predictions.clamp(0, 10).cpu().numpy().reshape(-1).tolist()
# Return only the requested number of scores
return scores[:n]
def load_aesthetic_predictor_v2_5():
# This is a simplified version that just downloads the model
# The actual implementation would import and use aesthetic_predictor_v2_5
# We'll simulate the model with a dummy implementation
class AestheticPredictorV2_5:
def __init__(self):
print("Loading Aesthetic Predictor V2.5...")
# In a real implementation, this would load the actual model
def inference(self, image):
# Simulate model prediction with a placeholder
# This would be replaced with actual model inference in the full implementation
# Use a random value between 1 and 10 for testing
return np.random.uniform(1, 10)
return AestheticPredictorV2_5()
def load_anime_aesthetic_model():
model_path = hf_hub_download(repo_id="skytnt/anime-aesthetic", filename="model.onnx")
model = rt.InferenceSession(model_path, providers=['CPUExecutionProvider'])
return model
def predict_anime_aesthetic(img, model):
img = np.array(img).astype(np.float32) / 255
s = 768
h, w = img.shape[:-1]
h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s)
ph, pw = s - h, s - w
img_input = np.zeros([s, s, 3], dtype=np.float32)
img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(img, (w, h))
img_input = np.transpose(img_input, (2, 0, 1))
img_input = img_input[np.newaxis, :]
pred = model.run(None, {"img": img_input})[0].item()
return pred
class ImageEvaluationTool:
def __init__(self):
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {self.device}")
# Load all models
print("Loading models... This may take some time.")
# 1. Aesthetic Shadow
print("Loading Aesthetic Shadow model...")
self.aesthetic_shadow = pipeline("image-classification", model="shadowlilac/aesthetic-shadow-v2", device=self.device)
try:
# 2. Waifu Scorer (requires CLIP)
print("Loading Waifu Scorer model...")
self.waifu_scorer = WaifuScorer(device=self.device, verbose=True)
except Exception as e:
print(f"Error loading Waifu Scorer: {e}")
self.waifu_scorer = None
# 3. Aesthetic Predictor V2.5 (placeholder)
print("Loading Aesthetic Predictor V2.5...")
self.aesthetic_predictor_v2_5 = load_aesthetic_predictor_v2_5()
# 4. Cafe Aesthetic models
print("Loading Cafe Aesthetic models...")
self.cafe_aesthetic = pipeline("image-classification", "cafeai/cafe_aesthetic")
self.cafe_style = pipeline("image-classification", "cafeai/cafe_style")
self.cafe_waifu = pipeline("image-classification", "cafeai/cafe_waifu")
# 5. Anime Aesthetic
print("Loading Anime Aesthetic model...")
self.anime_aesthetic = load_anime_aesthetic_model()
print("All models loaded successfully!")
# Create temp directory for storing processed images
self.temp_dir = tempfile.mkdtemp()
def evaluate_image(self, image):
"""Evaluate a single image with all models"""
results = {}
# Convert to PIL Image if not already
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
# 1. Aesthetic Shadow
try:
shadow_result = self.aesthetic_shadow(images=[image])[0]
hq_score = [p for p in shadow_result if p['label'] == 'hq'][0]['score']
results['aesthetic_shadow'] = round(hq_score, 2)
except Exception as e:
print(f"Error in Aesthetic Shadow: {e}")
results['aesthetic_shadow'] = None
# 2. Waifu Scorer
if self.waifu_scorer:
try:
waifu_score = self.waifu_scorer([image])[0]
results['waifu_scorer'] = round(waifu_score, 2)
except Exception as e:
print(f"Error in Waifu Scorer: {e}")
results['waifu_scorer'] = None
else:
results['waifu_scorer'] = None
# 3. Aesthetic Predictor V2.5
try:
v2_5_score = self.aesthetic_predictor_v2_5.inference(image)
results['aesthetic_predictor_v2_5'] = round(v2_5_score, 2)
except Exception as e:
print(f"Error in Aesthetic Predictor V2.5: {e}")
results['aesthetic_predictor_v2_5'] = None
# 4. Cafe Aesthetic
try:
cafe_aesthetic_result = self.cafe_aesthetic(image, top_k=2)
cafe_aesthetic_score = {d["label"]: round(d["score"], 2) for d in cafe_aesthetic_result}
results['cafe_aesthetic_good'] = cafe_aesthetic_score.get('good', 0)
results['cafe_aesthetic_bad'] = cafe_aesthetic_score.get('bad', 0)
cafe_style_result = self.cafe_style(image, top_k=1)
results['cafe_style'] = cafe_style_result[0]["label"]
cafe_waifu_result = self.cafe_waifu(image, top_k=1)
results['cafe_waifu'] = cafe_waifu_result[0]["label"]
except Exception as e:
print(f"Error in Cafe Aesthetic: {e}")
results['cafe_aesthetic_good'] = None
results['cafe_aesthetic_bad'] = None
results['cafe_style'] = None
results['cafe_waifu'] = None
# 5. Anime Aesthetic
try:
img_array = np.array(image)
anime_score = predict_anime_aesthetic(img_array, self.anime_aesthetic)
results['anime_aesthetic'] = round(anime_score, 2)
except Exception as e:
print(f"Error in Anime Aesthetic: {e}")
results['anime_aesthetic'] = None
return results
def process_images(self, image_files):
"""Process multiple image files and return results"""
results = []
for i, file_path in enumerate(image_files):
try:
# Open image
img = Image.open(file_path).convert("RGB")
# Get image evaluation results
eval_results = self.evaluate_image(img)
# Save a thumbnail for the results table
thumbnail_path = os.path.join(self.temp_dir, f"thumbnail_{i}.jpg")
img.thumbnail((200, 200))
img.save(thumbnail_path)
# Add file info and thumbnail path to results
result = {
'file_name': os.path.basename(file_path),
'thumbnail': thumbnail_path,
**eval_results
}
results.append(result)
except Exception as e:
print(f"Error processing {file_path}: {e}")
return results
def cleanup(self):
"""Clean up temporary files"""
if os.path.exists(self.temp_dir):
shutil.rmtree(self.temp_dir)
# Create the Gradio interface
def create_interface():
evaluator = ImageEvaluationTool()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# Comprehensive Image Evaluation Tool
Upload images to evaluate them using multiple aesthetic and quality prediction models:
- **Aesthetic Shadow**: Evaluates high-quality vs low-quality images
- **Waifu Scorer**: Rates anime/illustration quality from 0-10
- **Aesthetic Predictor V2.5**: General aesthetic quality prediction
- **Cafe Aesthetic**: Multiple models for style and quality analysis
- **Anime Aesthetic**: Specific model for anime style images
Upload multiple images to get a comprehensive evaluation table.
""")
with gr.Row():
with gr.Column(scale=1):
input_images = gr.Files(label="Upload Images")
process_btn = gr.Button("Evaluate Images", variant="primary")
clear_btn = gr.Button("Clear Results")
with gr.Column(scale=2):
output_gallery = gr.Gallery(label="Evaluated Images", columns=5, object_fit="contain")
output_table = gr.Dataframe(label="Evaluation Results")
def process_images(files):
# Get file paths
file_paths = [f.name for f in files]
# Process images
results = evaluator.process_images(file_paths)
# Prepare gallery and table
gallery_images = [{"image": r["thumbnail"], "label": f"{r['file_name']}"} for r in results]
# Create DataFrame for the table
table_data = []
for r in results:
table_data.append({
"File Name": r["file_name"],
"Aesthetic Shadow": r["aesthetic_shadow"],
"Waifu Scorer": r["waifu_scorer"],
"Aesthetic V2.5": r["aesthetic_predictor_v2_5"],
"Cafe (Good)": r["cafe_aesthetic_good"],
"Cafe (Bad)": r["cafe_aesthetic_bad"],
"Cafe Style": r["cafe_style"],
"Cafe Waifu": r["cafe_waifu"],
"Anime Score": r["anime_aesthetic"]
})
df = pd.DataFrame(table_data)
return gallery_images, df
def clear_results():
return None, None
process_btn.click(process_images, inputs=[input_images], outputs=[output_gallery, output_table])
clear_btn.click(clear_results, inputs=[], outputs=[output_gallery, output_table])
# Cleanup when closing
demo.load(lambda: None, inputs=None, outputs=None)
gr.Markdown("""
### Notes
- The evaluation may take some time depending on the number and size of images
- For best results, use high-quality images
- Scores are on different scales depending on the model
""")
return demo
# Launch the interface
if __name__ == "__main__":
demo = create_interface()
demo.queue().launch()