File size: 6,085 Bytes
5ba996d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b15668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11deb71
d524505
 
 
11deb71
5ba996d
 
bc2a7e3
 
 
 
 
 
 
 
 
 
5ba996d
 
11deb71
5ba996d
 
 
11deb71
5ba996d
 
49f3a23
5ba996d
35294b9
5ba996d
 
49f3a23
5ba996d
 
6d8ed0e
11deb71
5ba996d
 
 
35294b9
49f3a23
6d8ed0e
 
5ba996d
 
 
49f3a23
35294b9
11deb71
6d8ed0e
11deb71
 
 
 
 
 
 
 
 
 
 
 
0b15668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ba996d
0b15668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ba996d
35294b9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import streamlit as st
import tensorflow as tf
from keras.layers import Input, Dense, Embedding, MultiHeadAttention
from keras.layers import Dropout, LayerNormalization
from keras.models import Model
from keras.utils import pad_sequences
import numpy as np

class TransformerChatbot(Model):
    def __init__(self, vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate):
        super(TransformerChatbot, self).__init__()
        self.embedding = Embedding(vocab_size, d_model)
        self.attention = MultiHeadAttention(num_heads=n_head, key_dim=d_model)
        self.norm1 = LayerNormalization(epsilon=1e-6)
        self.dropout1 = Dropout(dropout_rate)
        self.dense1 = Dense(ff_dim, activation="relu")
        self.dense2 = Dense(d_model)
        self.norm2 = LayerNormalization(epsilon=1e-6)
        self.dropout2 = Dropout(dropout_rate)
        self.flatten = tf.keras.layers.Flatten()
        self.fc = Dense(vocab_size, activation="softmax")
        self.max_len = max_len

    def call(self, inputs):
        x = self.embedding(inputs)
        # Masking
        mask = self.create_padding_mask(inputs)
        attn_output = self.attention(x, x, x, attention_mask=mask)
        x = x + attn_output
        x = self.norm1(x)
        x = self.dropout1(x)
        x = self.dense1(x)
        x = self.dense2(x)
        x = self.norm2(x)
        x = self.dropout2(x)
        x = self.fc(x)
        return x

    def create_padding_mask(self, seq):
        mask = tf.cast(tf.math.equal(seq, 0), tf.float32)
        return mask[:, tf.newaxis, tf.newaxis, :]

st.title("UniGLM TEXT completion Model")
st.subheader("Next Word Prediction AI Model by Webraft-AI")
#Picking what NLP task you want to do
option = st.selectbox('Model',('13M','26M')) #option is stored in this variable
#Textbox for text user is entering
st.subheader("Enter a word from which a sentence / word would be predicted")
len2 = st.text_input('Enter sequence length: ') 
text2 = st.text_input('Enter word: ') #text is stored in this variable


if option == '13M':
    vocab_size = 100000
    max_len = 1
    d_model = 64  # 64 , 1024
    n_head = 4  # 8 , 16
    ff_dim = 256  # 256 , 2048
    dropout_rate = 0.1  # 0.5 , 0.2
    weights = "predict3"
    datafile = "data2.txt"
    dict = "dict_predict3.bin.npz"
    len = len2
    text2 = text2
    with open(datafile,"r") as f:
        text = f.read()
    text = text.lower()
    words = text.split()
    loaded_dict = np.load(dict, allow_pickle=True)
    word_to_num = loaded_dict["word_to_num"].item()
    num_to_word = loaded_dict["num_to_word"].item()
    X = []
    Y = []
    for i in range(len(words)-1):
        word = words[i]
        next_word = words[i+1]
        X.append(word_to_num[word])
        Y.append(word_to_num[next_word])
    Y.append(0)

    X.append(word_to_num[words[-1]])
    X_train = pad_sequences([X])
    y_train = pad_sequences([Y])
    


    chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
    chatbot.load_weights(weights)
    chatbot.build(input_shape=(None, max_len)) # Build the model
    chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
    
    for i in range(1):
        other_text1 = text2
        other_text1 = other_text1.lower()
        other_words1 = other_text1.split()
        other_num1 = [word_to_num[word] for word in other_words1]
        given_X1 = other_num1
        input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
        output_sentence = ""
        for _ in range(len):
            predicted_token = np.argmax(chatbot.predict(input_sequence1), axis=-1)
            predicted_token = predicted_token.item()
            out = num_to_word[predicted_token]
            
    
            output_sentence = out
            
            given_X1 = given_X1[1:]
            given_X1.append(predicted_token)
            input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')

        out2 = output_sentence
        
    
elif option=="26M":
    vocab_size = 100000
    max_len = 1
    d_model = 128  # 64 , 1024
    n_head = 8 # 8 , 16
    ff_dim = 256  # 256 , 2048
    dropout_rate = 0.1  # 0.5 , 0.2
    weights = "predict5"
    datafile = "data2.txt"
    dict = "dict_predict3.bin.npz"
    len = len2
    text2 = text2
        with open(datafile,"r") as f:
        text = f.read()
    text = text.lower()
    words = text.split()
    loaded_dict = np.load(dict, allow_pickle=True)
    word_to_num = loaded_dict["word_to_num"].item()
    num_to_word = loaded_dict["num_to_word"].item()
    X = []
    Y = []
    for i in range(len(words)-1):
        word = words[i]
        next_word = words[i+1]
        X.append(word_to_num[word])
        Y.append(word_to_num[next_word])
    Y.append(0)

    X.append(word_to_num[words[-1]])
    X_train = pad_sequences([X])
    y_train = pad_sequences([Y])
    


    chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
    chatbot.load_weights(weights)
    chatbot.build(input_shape=(None, max_len)) # Build the model
    chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
    
    for i in range(1):
        other_text1 = text2
        other_text1 = other_text1.lower()
        other_words1 = other_text1.split()
        other_num1 = [word_to_num[word] for word in other_words1]
        given_X1 = other_num1
        input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
        output_sentence = ""
        for _ in range(len):
            predicted_token = np.argmax(chatbot.predict(input_sequence1), axis=-1)
            predicted_token = predicted_token.item()
            out = num_to_word[predicted_token]
            
    
            output_sentence = out
            
            given_X1 = given_X1[1:]
            given_X1.append(predicted_token)
            input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')

        out2 = output_sentence
else:
    out2 = "Error: Wrong Model Selected"
st.write("Predicted Text: ")
st.write(out2)