Spaces:
Paused
Paused
File size: 6,085 Bytes
5ba996d 0b15668 11deb71 d524505 11deb71 5ba996d bc2a7e3 5ba996d 11deb71 5ba996d 11deb71 5ba996d 49f3a23 5ba996d 35294b9 5ba996d 49f3a23 5ba996d 6d8ed0e 11deb71 5ba996d 35294b9 49f3a23 6d8ed0e 5ba996d 49f3a23 35294b9 11deb71 6d8ed0e 11deb71 0b15668 5ba996d 0b15668 5ba996d 35294b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import streamlit as st
import tensorflow as tf
from keras.layers import Input, Dense, Embedding, MultiHeadAttention
from keras.layers import Dropout, LayerNormalization
from keras.models import Model
from keras.utils import pad_sequences
import numpy as np
class TransformerChatbot(Model):
def __init__(self, vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate):
super(TransformerChatbot, self).__init__()
self.embedding = Embedding(vocab_size, d_model)
self.attention = MultiHeadAttention(num_heads=n_head, key_dim=d_model)
self.norm1 = LayerNormalization(epsilon=1e-6)
self.dropout1 = Dropout(dropout_rate)
self.dense1 = Dense(ff_dim, activation="relu")
self.dense2 = Dense(d_model)
self.norm2 = LayerNormalization(epsilon=1e-6)
self.dropout2 = Dropout(dropout_rate)
self.flatten = tf.keras.layers.Flatten()
self.fc = Dense(vocab_size, activation="softmax")
self.max_len = max_len
def call(self, inputs):
x = self.embedding(inputs)
# Masking
mask = self.create_padding_mask(inputs)
attn_output = self.attention(x, x, x, attention_mask=mask)
x = x + attn_output
x = self.norm1(x)
x = self.dropout1(x)
x = self.dense1(x)
x = self.dense2(x)
x = self.norm2(x)
x = self.dropout2(x)
x = self.fc(x)
return x
def create_padding_mask(self, seq):
mask = tf.cast(tf.math.equal(seq, 0), tf.float32)
return mask[:, tf.newaxis, tf.newaxis, :]
st.title("UniGLM TEXT completion Model")
st.subheader("Next Word Prediction AI Model by Webraft-AI")
#Picking what NLP task you want to do
option = st.selectbox('Model',('13M','26M')) #option is stored in this variable
#Textbox for text user is entering
st.subheader("Enter a word from which a sentence / word would be predicted")
len2 = st.text_input('Enter sequence length: ')
text2 = st.text_input('Enter word: ') #text is stored in this variable
if option == '13M':
vocab_size = 100000
max_len = 1
d_model = 64 # 64 , 1024
n_head = 4 # 8 , 16
ff_dim = 256 # 256 , 2048
dropout_rate = 0.1 # 0.5 , 0.2
weights = "predict3"
datafile = "data2.txt"
dict = "dict_predict3.bin.npz"
len = len2
text2 = text2
with open(datafile,"r") as f:
text = f.read()
text = text.lower()
words = text.split()
loaded_dict = np.load(dict, allow_pickle=True)
word_to_num = loaded_dict["word_to_num"].item()
num_to_word = loaded_dict["num_to_word"].item()
X = []
Y = []
for i in range(len(words)-1):
word = words[i]
next_word = words[i+1]
X.append(word_to_num[word])
Y.append(word_to_num[next_word])
Y.append(0)
X.append(word_to_num[words[-1]])
X_train = pad_sequences([X])
y_train = pad_sequences([Y])
chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
chatbot.load_weights(weights)
chatbot.build(input_shape=(None, max_len)) # Build the model
chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
for i in range(1):
other_text1 = text2
other_text1 = other_text1.lower()
other_words1 = other_text1.split()
other_num1 = [word_to_num[word] for word in other_words1]
given_X1 = other_num1
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
output_sentence = ""
for _ in range(len):
predicted_token = np.argmax(chatbot.predict(input_sequence1), axis=-1)
predicted_token = predicted_token.item()
out = num_to_word[predicted_token]
output_sentence = out
given_X1 = given_X1[1:]
given_X1.append(predicted_token)
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
out2 = output_sentence
elif option=="26M":
vocab_size = 100000
max_len = 1
d_model = 128 # 64 , 1024
n_head = 8 # 8 , 16
ff_dim = 256 # 256 , 2048
dropout_rate = 0.1 # 0.5 , 0.2
weights = "predict5"
datafile = "data2.txt"
dict = "dict_predict3.bin.npz"
len = len2
text2 = text2
with open(datafile,"r") as f:
text = f.read()
text = text.lower()
words = text.split()
loaded_dict = np.load(dict, allow_pickle=True)
word_to_num = loaded_dict["word_to_num"].item()
num_to_word = loaded_dict["num_to_word"].item()
X = []
Y = []
for i in range(len(words)-1):
word = words[i]
next_word = words[i+1]
X.append(word_to_num[word])
Y.append(word_to_num[next_word])
Y.append(0)
X.append(word_to_num[words[-1]])
X_train = pad_sequences([X])
y_train = pad_sequences([Y])
chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
chatbot.load_weights(weights)
chatbot.build(input_shape=(None, max_len)) # Build the model
chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
for i in range(1):
other_text1 = text2
other_text1 = other_text1.lower()
other_words1 = other_text1.split()
other_num1 = [word_to_num[word] for word in other_words1]
given_X1 = other_num1
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
output_sentence = ""
for _ in range(len):
predicted_token = np.argmax(chatbot.predict(input_sequence1), axis=-1)
predicted_token = predicted_token.item()
out = num_to_word[predicted_token]
output_sentence = out
given_X1 = given_X1[1:]
given_X1.append(predicted_token)
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
out2 = output_sentence
else:
out2 = "Error: Wrong Model Selected"
st.write("Predicted Text: ")
st.write(out2) |