Spaces:
Paused
Paused
File size: 8,384 Bytes
5ba996d 8fa9e91 5ba996d 130d634 5ba996d 896bfe3 0b15668 11deb71 d524505 11deb71 5ba996d bc2a7e3 5ba996d 11deb71 5ba996d 11deb71 5ba996d 49f3a23 5ba996d 93c51a9 896bfe3 93c51a9 5ba996d 93c51a9 49f3a23 93c51a9 130d634 896bfe3 130d634 896bfe3 130d634 5d17a8c 130d634 5d17a8c 130d634 9e17522 130d634 11deb71 6d8ed0e 896bfe3 130d634 5d17a8c 130d634 5d17a8c 896bfe3 41505f0 9e17522 896bfe3 0b15668 130d634 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import streamlit as st
import tensorflow as tf
from keras.layers import Input, Dense, Embedding, MultiHeadAttention
from keras.layers import Dropout, LayerNormalization
from keras.models import Model
from keras.utils import pad_sequences
from tensorflow.keras import layers
import numpy as np
import logging
logging.getLogger('tensorflow').setLevel(logging.ERROR)
class TransformerChatbot(Model):
def __init__(self, vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate):
super(TransformerChatbot, self).__init__()
self.embedding = Embedding(vocab_size, d_model)
self.attention = MultiHeadAttention(num_heads=n_head, key_dim=d_model)
self.norm1 = LayerNormalization(epsilon=1e-6)
self.dropout1 = Dropout(dropout_rate)
self.dense1 = Dense(ff_dim, activation="relu")
self.dense2 = Dense(d_model)
self.norm2 = LayerNormalization(epsilon=1e-6)
self.dropout2 = Dropout(dropout_rate)
self.flatten = tf.keras.layers.Flatten()
self.fc = Dense(vocab_size, activation="softmax")
self.max_len = max_len
def call(self, inputs):
x = self.embedding(inputs)
# Masking
mask = self.create_padding_mask(inputs)
attn_output = self.attention(x, x, x, attention_mask=mask)
x = x + attn_output
x = self.norm1(x)
x = self.dropout1(x)
x = self.dense1(x)
x = self.dense2(x)
x = self.norm2(x)
x = self.dropout2(x)
x = self.fc(x)
return x
def create_padding_mask(self, seq):
mask = tf.cast(tf.math.equal(seq, 0), tf.float32)
return mask[:, tf.newaxis, tf.newaxis, :]
def completion_model(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate,weights,datafile,dict,len2,text2):
with open(datafile,"r") as f:
text = f.read()
text = text.lower()
words = text.split()
loaded_dict = np.load(dict, allow_pickle=True)
word_to_num = loaded_dict["word_to_num"].item()
num_to_word = loaded_dict["num_to_word"].item()
X = []
Y = []
for i in range(len(words)-1):
word = words[i]
next_word = words[i+1]
X.append(word_to_num[word])
Y.append(word_to_num[next_word])
Y.append(0)
X.append(word_to_num[words[-1]])
X_train = pad_sequences([X])
y_train = pad_sequences([Y])
chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
chatbot.load_weights(weights)
chatbot.build(input_shape=(None, max_len)) # Build the model
chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
for i in range(1):
other_text2 = text2
other_text2 = other_text2.lower()
other_words2 = other_text2.split()
other_num2 = [word_to_num[word] for word in other_words2]
given_X2 = other_num2
input_sequence2 = pad_sequences([given_X2], maxlen=max_len, padding='post')
output_sentence = other_text2 + ""
for _ in range(len2):
predicted_token = np.argmax(chatbot.predict(input_sequence2), axis=-1)
predicted_token = predicted_token.item()
out = num_to_word[predicted_token]
# if out == ".":
# break
output_sentence += " " + out
given_X2 = given_X2[1:]
given_X2.append(predicted_token)
input_sequence2 = pad_sequences([given_X2], maxlen=max_len, padding='post')
out2 = output_sentence
return out2
st.title("UniGLM TEXT completion Model")
st.subheader("Next Word Prediction AI Model by Webraft-AI")
#Picking what NLP task you want to do
option = st.selectbox('Model',('13M_OLD','26M_OLD')) #option is stored in this variable
#Textbox for text user is entering
st.subheader("Enter a word from which a sentence / word would be predicted")
text2 = st.text_input('Enter word: ') #text is stored in this variable
if option == '13M_OLD':
option2 = st.selectbox('Type',('word','sentence'))
if option2 == 'word':
len2 = 1
else:
len2 = 13
vocab_size = 100000
max_len = 1
d_model = 64 # 64 , 1024
n_head = 4 # 8 , 16
ff_dim = 256 # 256 , 2048
dropout_rate = 0.1 # 0.5 , 0.2
weights = "predict3"
datafile = "data2.txt"
dict = "dict_predict3.bin.npz"
with open(datafile,"r") as f:
text = f.read()
text = text.lower()
words = text.split()
loaded_dict = np.load(dict, allow_pickle=True)
word_to_num = loaded_dict["word_to_num"].item()
num_to_word = loaded_dict["num_to_word"].item()
X = []
Y = []
for i in range(len(words)-1):
word = words[i]
next_word = words[i+1]
X.append(word_to_num[word])
Y.append(word_to_num[next_word])
Y.append(0)
X.append(word_to_num[words[-1]])
X_train = pad_sequences([X])
y_train = pad_sequences([Y])
chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
chatbot.load_weights(weights)
chatbot.build(input_shape=(None, max_len)) # Build the model
chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
for i in range(1):
other_text2 = text2
other_text2 = other_text2.lower()
other_words2 = other_text2.split()
other_num2 = [word_to_num[word] for word in other_words2]
given_X2 = other_num2
input_sequence2 = pad_sequences([given_X2], maxlen=max_len, padding='post')
output_sentence = other_text2 + ""
for _ in range(len2):
predicted_token = np.argmax(chatbot.predict(input_sequence2), axis=-1)
predicted_token = predicted_token.item()
out = num_to_word[predicted_token]
# if out == ".":
# break
output_sentence += " " + out
given_X2 = given_X2[1:]
given_X2.append(predicted_token)
input_sequence2 = pad_sequences([given_X2], maxlen=max_len, padding='post')
out2 = output_sentence
st.write("Predicted Text: ")
st.write(out2)
elif option=="26M_OLD":
option2 = st.selectbox('Type',('word','sentence'))
if option2 == 'word':
len2 = 1
else:
len2 = 13
vocab_size = 100000
max_len = 1
d_model = 128 # 64 , 1024
n_head = 4 # 8 , 16
ff_dim = 256 # 256 , 2048
dropout_rate = 0.1 # 0.5 , 0.2
weights = "predict1"
datafile = "data2.txt"
dict = "dict_predict1.bin.npz"
with open(datafile,"r") as f:
text = f.read()
text = text.lower()
words = text.split()
loaded_dict = np.load(dict, allow_pickle=True)
word_to_num = loaded_dict["word_to_num"].item()
num_to_word = loaded_dict["num_to_word"].item()
X = []
Y = []
for i in range(len(words)-1):
word = words[i]
next_word = words[i+1]
X.append(word_to_num[word])
Y.append(word_to_num[next_word])
Y.append(0)
X.append(word_to_num[words[-1]])
X_train = pad_sequences([X])
y_train = pad_sequences([Y])
chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
chatbot.load_weights(weights)
chatbot.build(input_shape=(None, max_len)) # Build the model
chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
for i in range(1):
other_text2 = text2
other_text2 = other_text2.lower()
other_words2 = other_text2.split()
other_num2 = [word_to_num[word] for word in other_words2]
given_X2 = other_num2
input_sequence2 = pad_sequences([given_X2], maxlen=max_len, padding='post')
output_sentence = other_text2 + ""
for _ in range(len2):
predicted_token = np.argmax(chatbot.predict(input_sequence2), axis=-1)
predicted_token = predicted_token.item()
out = num_to_word[predicted_token]
# if out == ".":
# break
output_sentence += " " + out
given_X2 = given_X2[1:]
given_X2.append(predicted_token)
input_sequence2 = pad_sequences([given_X2], maxlen=max_len, padding='post')
out2 = output_sentence
st.write("Predicted Text: ")
st.write(out2)
else:
out2 = "Error: Wrong Model Selected"
st.write(out2)
|