File size: 5,486 Bytes
30d6359 4301295 30d6359 4301295 de05ae1 9f54a3b de05ae1 1ea71c8 de05ae1 c2231bb de05ae1 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 b7f505b 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 9f54a3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
""" Simple Chatbot
@author: Nigel Gebodh
@email: [email protected]
"""
#""" Simple Chatbot
#@author: Wedyan2023
#@email: [email protected]
#"""
import numpy as np
import streamlit as st
from openai import OpenAI
import os
import sys
from dotenv import load_dotenv
load_dotenv()
# Initialize the client
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1",
api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') # Add your Huggingface token here
)
# Supported models
model_links = {
"Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct"
}
# Random dog images for error messages
random_dog = [
"0f476473-2d8b-415e-b944-483768418a95.jpg",
"1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
"526590d2-8817-4ff0-8c62-fdcba5306d02.jpg",
"1326984c-39b0-492c-a773-f120d747a7e2.jpg"
]
# Reset conversation
def reset_conversation():
st.session_state.conversation = []
st.session_state.messages = []
return None
# Define the available models
models = [key for key in model_links.keys()]
# Sidebar for model selection
selected_model = st.sidebar.selectbox("Select Model", models)
# Temperature slider
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5)
# Reset button
st.sidebar.button('Reset Chat', on_click=reset_conversation)
# Model description
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
# Chat initialization
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Main logic to choose between data generation and data labeling
task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"])
if task_choice == "Data Generation":
classification_type = st.selectbox(
"Choose Classification Type",
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
)
if classification_type == "Sentiment Analysis":
st.write("Sentiment Analysis: Positive, Negative, Neutral")
labels = ["Positive", "Negative", "Neutral"]
elif classification_type == "Binary Classification":
label_1 = st.text_input("Enter first class")
label_2 = st.text_input("Enter second class")
labels = [label_1, label_2]
elif classification_type == "Multi-Class Classification":
num_classes = st.slider("How many classes?", 3, 10, 3)
labels = [st.text_input(f"Class {i+1}") for i in range(num_classes)]
domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"])
if domain == "Custom":
domain = st.text_input("Specify custom domain")
min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10)
max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90)
few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"])
if few_shot == "Yes":
num_examples = st.slider("How many few-shot examples?", 1, 5, 1)
few_shot_examples = [
{"content": st.text_area(f"Example {i+1}"), "label": st.selectbox(f"Label for example {i+1}", labels)}
for i in range(num_examples)
]
else:
few_shot_examples = []
# Ask the user how many examples they need
num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=50, value=10)
# System prompt generation
system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n"
if few_shot_examples:
system_prompt += "Use the following few-shot examples as a reference:\n"
for example in few_shot_examples:
system_prompt += f"Example: {example['content']}, Label: {example['label']}\n"
system_prompt += f"Each example should have between {min_words} and {max_words} words.\n"
system_prompt += "Think step by step while generating the examples."
st.write("System Prompt:")
st.code(system_prompt)
if st.button("Generate Examples"):
# Generate examples by concatenating all inputs and sending it to the model
with st.spinner("Generating..."):
st.session_state.messages.append({"role": "system", "content": system_prompt})
try:
stream = client.chat.completions.create(
model=model_links[selected_model],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
temperature=temp_values,
stream=True,
max_tokens=3000,
)
response = st.write_stream(stream)
except Exception as e:
response = "Error during generation."
random_dog_pick = 'https://random.dog/' + random_dog[np.random.randint(len(random_dog))]
st.image(random_dog_pick)
st.write(e)
st.session_state.messages.append({"role": "assistant", "content": response})
else:
# Data labeling workflow (for future implementation based on classification)
st.write("Data Labeling functionality will go here.")
|