File size: 5,411 Bytes
e8f079f
 
 
 
 
002b092
9f54a3b
 
 
9f57726
c2231bb
9f54a3b
c2231bb
9f54a3b
c2231bb
9f54a3b
c2231bb
9f57726
c2231bb
 
9f57726
 
 
 
 
 
 
 
 
 
 
 
 
 
142827c
 
 
 
9f54a3b
9f57726
 
ff5d948
9f57726
 
b7f505b
9f57726
 
b7f505b
9f57726
 
b7f505b
9f57726
 
 
b7f505b
9f57726
 
 
b7f505b
9f57726
 
 
 
b7f505b
9f57726
 
b7f505b
9f57726
 
 
 
 
b7f505b
9f57726
 
 
 
 
 
 
 
 
 
b7f505b
9f57726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7f505b
 
 
9f57726
b7f505b
 
 
 
9f57726
b7f505b
 
 
 
 
9f57726
 
 
 
b7f505b
9f57726
b7f505b
 
9f57726
 
 
 
9f54a3b
ff5d948
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
""" Simple Chatbot
@author: Nigel Gebodh
@email: [email protected]

"""
import numpy as np
import streamlit as st
from openai import OpenAI
import os
import sys
from dotenv import load_dotenv

load_dotenv()

# Initialize the client
client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1",
    api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN')  # Add your Huggingface token here
)

# Supported models
model_links = {
    "Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct"
}

# Random dog images for error messages
random_dog = [
    "0f476473-2d8b-415e-b944-483768418a95.jpg",
    "1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
    "526590d2-8817-4ff0-8c62-fdcba5306d02.jpg",
    "1326984c-39b0-492c-a773-f120d747a7e2.jpg"
]

# Reset conversation
def reset_conversation():
    st.session_state.conversation = []
    st.session_state.messages = []
    return None

# Define the available models
models = [key for key in model_links.keys()]

# Sidebar for model selection
selected_model = st.sidebar.selectbox("Select Model", models)

# Temperature slider
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5)

# Reset button
st.sidebar.button('Reset Chat', on_click=reset_conversation)

# Model description
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown("*Generated content may be inaccurate or false.*")

# Chat initialization
if "messages" not in st.session_state:
    st.session_state.messages = []

# Display chat messages
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Main logic to choose between data generation and data labeling
task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"])

if task_choice == "Data Generation":
    classification_type = st.selectbox(
        "Choose Classification Type",
        ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
    )

    if classification_type == "Sentiment Analysis":
        st.write("Sentiment Analysis: Positive, Negative, Neutral")
        labels = ["Positive", "Negative", "Neutral"]
    elif classification_type == "Binary Classification":
        label_1 = st.text_input("Enter first class")
        label_2 = st.text_input("Enter second class")
        labels = [label_1, label_2]
    elif classification_type == "Multi-Class Classification":
        num_classes = st.slider("How many classes?", 3, 10, 3)
        labels = [st.text_input(f"Class {i+1}") for i in range(num_classes)]

    domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"])
    if domain == "Custom":
        domain = st.text_input("Specify custom domain")

    min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10)
    max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90)

    few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"])
    if few_shot == "Yes":
        num_examples = st.slider("How many few-shot examples?", 1, 5, 1)
        few_shot_examples = [
            {"content": st.text_area(f"Example {i+1}"), "label": st.selectbox(f"Label for example {i+1}", labels)}
            for i in range(num_examples)
        ]
    else:
        few_shot_examples = []

    # Ask the user how many examples they need
    num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=50, value=10)

    # System prompt generation
    system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n"
    if few_shot_examples:
        system_prompt += "Use the following few-shot examples as a reference:\n"
        for example in few_shot_examples:
            system_prompt += f"Example: {example['content']}, Label: {example['label']}\n"
    system_prompt += f"Each example should have between {min_words} and {max_words} words.\n"
    system_prompt += "Think step by step while generating the examples."

    st.write("System Prompt:")
    st.code(system_prompt)

    if st.button("Generate Examples"):
        # Generate examples by concatenating all inputs and sending it to the model
        with st.spinner("Generating..."):
            st.session_state.messages.append({"role": "system", "content": system_prompt})

            try:
                stream = client.chat.completions.create(
                    model=model_links[selected_model],
                    messages=[
                        {"role": m["role"], "content": m["content"]}
                        for m in st.session_state.messages
                    ],
                    temperature=temp_values,
                    stream=True,
                    max_tokens=3000,
                )
                response = st.write_stream(stream)
            except Exception as e:
                response = "Error during generation."
                random_dog_pick = 'https://random.dog/' + random_dog[np.random.randint(len(random_dog))]
                st.image(random_dog_pick)
                st.write(e)

            st.session_state.messages.append({"role": "assistant", "content": response})

else:
    # Data labeling workflow (for future implementation based on classification)
    st.write("Data Labeling functionality will go here.")