File size: 6,175 Bytes
4301295 aa6f9f2 4301295 aa6f9f2 a231670 de05ae1 9f54a3b de05ae1 ec1fb71 f21a672 c2231bb de05ae1 a231670 ae2b778 de05ae1 ecd882b de05ae1 1ea71c8 674f56a 1ea71c8 de05ae1 1ea71c8 b7f505b 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 ec1fb71 1ea71c8 795ea98 1ea71c8 ec1fb71 1ea71c8 21bafe7 1ea71c8 34e7a8b ec1fb71 34e7a8b ec1fb71 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 de05ae1 1ea71c8 9f54a3b ec1fb71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
#""" Simple Chatbot
#@author: Nigel Gebodh
#@email: [email protected]
#"""
""" Simple Chatbot
@author: Wedyan2023
@email: [email protected]
"""
import numpy as np
import streamlit as st
from openai import OpenAI
import os
from dotenv import load_dotenv
import random
os.environ["BROWSER_GATHERUSAGESTATS"] = "false"
load_dotenv()
## Embedding Using Huggingface
#huggingface_embeddings=HuggingFaceBgeEmbeddings(
#model_name="BAAI/bge-small-en-v1.5", #sentence-transformers/all-MiniLM-l6-v2
#model_kwargs={'device':'cpu'},
#encode_kwargs={'normalize_embeddings':True}
#)
# Initialize the client
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1",
#api_key=os.environ.get('HUGGINGFACE_API_TOKEN') # Add your Huggingface token here
api_key=os.environ.get('HF_TOKEN') # Add your Huggingface token here
)
# Supported models
model_links = {
"Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct"
}
# Random dog images for error messages
#random_dog = [
#"0f476473-2d8b-415e-b944-483768418a95.jpg",
#"1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
#"526590d2-8817-4ff0-8c62-fdcba5306d02.jpg",
# "1326984c-39b0-492c-a773-f120d747a7e2.jpg"
#]
# Reset conversation
def reset_conversation():
st.session_state.conversation = []
st.session_state.messages = []
return None
# Define the available models
models = [key for key in model_links.keys()]
# Sidebar for model selection
selected_model = st.sidebar.selectbox("Select Model", models)
# Temperature slider
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5)
# Reset button
st.sidebar.button('Reset Chat', on_click=reset_conversation)
# Model description
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
# Chat initialization
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Main logic to choose between data generation and data labeling
task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"])
if task_choice == "Data Generation":
classification_type = st.selectbox(
"Choose Classification Type",
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
)
if classification_type == "Sentiment Analysis":
st.write("Sentiment Analysis: Positive, Negative, Neutral")
labels = ["Positive", "Negative", "Neutral"]
elif classification_type == "Binary Classification":
label_1 = st.text_input("Enter first class")
label_2 = st.text_input("Enter second class")
labels = [label_1, label_2]
elif classification_type == "Multi-Class Classification":
num_classes = st.slider("How many classes?", 3, 10, 3)
labels = [st.text_input(f"Class {i+1}") for i in range(num_classes)]
domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"])
if domain == "Custom":
domain = st.text_input("Specify custom domain")
min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10)
max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90)
few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"])
if few_shot == "Yes":
num_examples = st.slider("How many few-shot examples?", 1, 5, 1)
few_shot_examples = [
{"content": st.text_area(f"Example {i+1}"), "label": st.selectbox(f"Label for example {i+1}", labels)}
for i in range(num_examples)
]
else:
few_shot_examples = []
# Ask the user how many examples they need
num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=100, value=10)
# User prompt text field
user_prompt = st.text_area("Enter your prompt to guide example generation", "")
# System prompt generation
system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n"
if few_shot_examples:
system_prompt += "Use the following few-shot examples as a reference:\n"
for example in few_shot_examples:
system_prompt += f"Example: {example['content']} \n Label: {example['label']}\n"
system_prompt += f"Generate {num_to_generate} unique examples with diverse phrasing.\n"
system_prompt += f"Each example should have between {min_words} and {max_words} words.\n"
system_prompt += f"Use the labels specified: {', '.join(labels)}.\n"
if user_prompt:
system_prompt += f"Additional instructions: {user_prompt}\n"
st.write("System Prompt:")
st.code(system_prompt)
if st.button("Generate Examples"):
# Generate examples by concatenating all inputs and sending it to the model
with st.spinner("Generating..."):
st.session_state.messages.append({"role": "system", "content": system_prompt})
try:
stream = client.chat.completions.create(
model=model_links[selected_model],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
temperature=temp_values,
stream=True,
max_tokens=3000,
)
response = st.write_stream(stream)
except Exception as e:
response = "Error during generation."
random_dog_pick = 'https://random.dog/' + random_dog[np.random.randint(len(random_dog))]
st.image(random_dog_pick)
st.write(e)
st.session_state.messages.append({"role": "assistant", "content": response})
else:
# Data labeling workflow (for future implementation based on classification)
st.write("Data Labeling functionality will go here.")
|