WinWut's picture
Update model.py
514baab
#Imports
from __future__ import print_function, division
import tensorflow as tf
from glob import glob
import scipy
import soundfile as sf
import matplotlib.pyplot as plt
from IPython.display import clear_output
from tensorflow.keras.layers import Input, Dense, Reshape, Flatten, Concatenate, Conv2D, Conv2DTranspose, GlobalAveragePooling2D, UpSampling2D, LeakyReLU, ReLU, Add, Multiply, Lambda, Dot, BatchNormalization, Activation, ZeroPadding2D, Cropping2D, Cropping1D
from tensorflow.keras.models import Sequential, Model, load_model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.initializers import TruncatedNormal, he_normal
import tensorflow.keras.backend as K
import datetime
import numpy as np
import random
import matplotlib.pyplot as plt
import collections
from PIL import Image
from skimage.transform import resize
import imageio
import librosa
import librosa.display
from librosa.feature import melspectrogram
import os
import time
import IPython
#Hyperparameters
hop=192 #hop size (window size = 6*hop)
sr=16000 #sampling rate
min_level_db=-100 #reference values to normalize data
ref_level_db=20
shape=24 #length of time axis of split specrograms to feed to generator
vec_len=128 #length of vector generated by siamese vector
bs = 16 #batch size
delta = 2. #constant for siamese loss
#There seems to be a problem with Tensorflow STFT, so we'll be using pytorch to handle offline mel-spectrogram generation and waveform reconstruction
#For waveform reconstruction, a gradient-based method is used:
''' Decorsière, Rémi, Peter L. Søndergaard, Ewen N. MacDonald, and Torsten Dau.
"Inversion of auditory spectrograms, traditional spectrograms, and other envelope representations."
IEEE/ACM Transactions on Audio, Speech, and Language Processing 23, no. 1 (2014): 46-56.'''
#ORIGINAL CODE FROM https://github.com/yoyololicon/spectrogram-inversion
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
from functools import partial
import math
import heapq
from torchaudio.transforms import MelScale, Spectrogram
specobj = Spectrogram(n_fft=6*hop, win_length=6*hop, hop_length=hop, pad=0, power=2, normalized=True)
specfunc = specobj.forward
melobj = MelScale(n_mels=hop, sample_rate=sr, f_min=0.,n_stft=577)
melfunc = melobj.forward
def melspecfunc(waveform):
specgram = specfunc(waveform)
mel_specgram = melfunc(specgram)
return mel_specgram
def spectral_convergence(input, target):
return 20 * ((input - target).norm().log10() - target.norm().log10())
def GRAD(spec, transform_fn, samples=None, init_x0=None, maxiter=1000, tol=1e-6, verbose=1, evaiter=10, lr=0.003):
spec = torch.Tensor(spec)
samples = (spec.shape[-1]*hop)-hop
if init_x0 is None:
init_x0 = spec.new_empty((1,samples)).normal_(std=1e-6)
x = nn.Parameter(init_x0)
T = spec
criterion = nn.L1Loss()
optimizer = torch.optim.Adam([x], lr=lr)
bar_dict = {}
metric_func = spectral_convergence
bar_dict['spectral_convergence'] = 0
metric = 'spectral_convergence'
init_loss = None
with tqdm(total=maxiter, disable=not verbose) as pbar:
for i in range(maxiter):
optimizer.zero_grad()
V = transform_fn(x)
loss = criterion(V, T)
loss.backward()
optimizer.step()
lr = lr*0.9999
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if i % evaiter == evaiter - 1:
with torch.no_grad():
V = transform_fn(x)
bar_dict[metric] = metric_func(V, spec).item()
l2_loss = criterion(V, spec).item()
pbar.set_postfix(**bar_dict, loss=l2_loss)
pbar.update(evaiter)
return x.detach().view(-1).cpu()
def normalize(S):
return np.clip((((S - min_level_db) / -min_level_db)*2.)-1., -1, 1)
def denormalize(S):
return (((np.clip(S, -1, 1)+1.)/2.) * -min_level_db) + min_level_db
def prep(wv,hop=192):
S = np.array(torch.squeeze(melspecfunc(torch.Tensor(wv).view(1,-1))).detach().cpu())
S = librosa.power_to_db(S)-ref_level_db
return normalize(S)
def deprep(S):
S = denormalize(S)+ref_level_db
S = librosa.db_to_power(S)
wv = GRAD(np.expand_dims(S,0), melspecfunc, maxiter=2000, evaiter=10, tol=1e-8)
return np.array(np.squeeze(wv))
#Helper functions
#Generate spectrograms from waveform array
def tospec(data):
specs=np.empty(data.shape[0], dtype=object)
for i in range(data.shape[0]):
x = data[i]
S=prep(x)
S = np.array(S, dtype=np.float32)
specs[i]=np.expand_dims(S, -1)
print(specs.shape)
return specs
#Generate multiple spectrograms with a determined length from single wav file
def tospeclong(path, length=4*16000):
x, sr = librosa.load(path,sr=16000)
x,_ = librosa.effects.trim(x)
loudls = librosa.effects.split(x, top_db=50)
xls = np.array([])
for interv in loudls:
xls = np.concatenate((xls,x[interv[0]:interv[1]]))
x = xls
num = x.shape[0]//length
specs=np.empty(num, dtype=object)
for i in range(num-1):
a = x[i*length:(i+1)*length]
S = prep(a)
S = np.array(S, dtype=np.float32)
try:
sh = S.shape
specs[i]=S
except AttributeError:
print('spectrogram failed')
print(specs.shape)
return specs
#Waveform array from path of folder containing wav files
def audio_array(path):
ls = glob(f'{path}/*.wav')
adata = []
for i in range(len(ls)):
try:
x, sr = tf.audio.decode_wav(tf.io.read_file(ls[i]), 1)
except:
print(ls[i],"is broken")
continue
x = np.array(x, dtype=np.float32)
adata.append(x)
return np.array(adata)
#Concatenate spectrograms in array along the time axis
def testass(a):
but=False
con = np.array([])
nim = a.shape[0]
for i in range(nim):
im = a[i]
im = np.squeeze(im)
if not but:
con=im
but=True
else:
con = np.concatenate((con,im), axis=1)
return np.squeeze(con)
#Split spectrograms in chunks with equal size
def splitcut(data):
ls = []
mini = 0
minifinal = 10*shape #max spectrogram length
for i in range(data.shape[0]-1):
if data[i].shape[1]<=data[i+1].shape[1]:
mini = data[i].shape[1]
else:
mini = data[i+1].shape[1]
if mini>=3*shape and mini<minifinal:
minifinal = mini
for i in range(data.shape[0]):
x = data[i]
if x.shape[1]>=3*shape:
for n in range(x.shape[1]//minifinal):
ls.append(x[:,n*minifinal:n*minifinal+minifinal,:])
ls.append(x[:,-minifinal:,:])
return np.array(ls)
#Adding Spectral Normalization to convolutional layers
from tensorflow.python.keras.utils import conv_utils
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import sparse_ops
from tensorflow.python.ops import gen_math_ops
from tensorflow.python.ops import standard_ops
from tensorflow.python.eager import context
from tensorflow.python.framework import tensor_shape
def l2normalize(v, eps=1e-12):
return v / (tf.norm(v) + eps)
class ConvSN2D(tf.keras.layers.Conv2D):
def __init__(self, filters, kernel_size, power_iterations=1, **kwargs):
super(ConvSN2D, self).__init__(filters, kernel_size, **kwargs)
self.power_iterations = power_iterations
def build(self, input_shape):
super(ConvSN2D, self).build(input_shape)
if self.data_format == 'channels_first':
channel_axis = 1
else:
channel_axis = -1
self.u = self.add_weight(self.name + '_u',
shape=tuple([1, self.kernel.shape.as_list()[-1]]),
initializer=tf.initializers.RandomNormal(0, 1),
trainable=False
)
def compute_spectral_norm(self, W, new_u, W_shape):
for _ in range(self.power_iterations):
new_v = l2normalize(tf.matmul(new_u, tf.transpose(W)))
new_u = l2normalize(tf.matmul(new_v, W))
sigma = tf.matmul(tf.matmul(new_v, W), tf.transpose(new_u))
W_bar = W/sigma
with tf.control_dependencies([self.u.assign(new_u)]):
W_bar = tf.reshape(W_bar, W_shape)
return W_bar
def convolution_op(self, inputs, kernel):
if self.padding == "causal":
tf_padding = "VALID" # Causal padding handled in `call`.
elif isinstance(self.padding, str):
tf_padding = self.padding.upper()
else:
tf_padding = self.padding
return tf.nn.convolution(
inputs,
kernel,
strides=list(self.strides),
padding=tf_padding,
dilations=list(self.dilation_rate),
)
def call(self, inputs):
W_shape = self.kernel.shape.as_list()
W_reshaped = tf.reshape(self.kernel, (-1, W_shape[-1]))
new_kernel = self.compute_spectral_norm(W_reshaped, self.u, W_shape)
outputs = self.convolution_op(inputs, new_kernel)
if self.use_bias:
if self.data_format == 'channels_first':
outputs = tf.nn.bias_add(outputs, self.bias, data_format='NCHW')
else:
outputs = tf.nn.bias_add(outputs, self.bias, data_format='NHWC')
if self.activation is not None:
return self.activation(outputs)
return outputs
class ConvSN2DTranspose(tf.keras.layers.Conv2DTranspose):
def __init__(self, filters, kernel_size, power_iterations=1, **kwargs):
super(ConvSN2DTranspose, self).__init__(filters, kernel_size, **kwargs)
self.power_iterations = power_iterations
def build(self, input_shape):
super(ConvSN2DTranspose, self).build(input_shape)
if self.data_format == 'channels_first':
channel_axis = 1
else:
channel_axis = -1
self.u = self.add_weight(self.name + '_u',
shape=tuple([1, self.kernel.shape.as_list()[-1]]),
initializer=tf.initializers.RandomNormal(0, 1),
trainable=False
)
def compute_spectral_norm(self, W, new_u, W_shape):
for _ in range(self.power_iterations):
new_v = l2normalize(tf.matmul(new_u, tf.transpose(W)))
new_u = l2normalize(tf.matmul(new_v, W))
sigma = tf.matmul(tf.matmul(new_v, W), tf.transpose(new_u))
W_bar = W/sigma
with tf.control_dependencies([self.u.assign(new_u)]):
W_bar = tf.reshape(W_bar, W_shape)
return W_bar
def call(self, inputs):
W_shape = self.kernel.shape.as_list()
W_reshaped = tf.reshape(self.kernel, (-1, W_shape[-1]))
new_kernel = self.compute_spectral_norm(W_reshaped, self.u, W_shape)
inputs_shape = array_ops.shape(inputs)
batch_size = inputs_shape[0]
if self.data_format == 'channels_first':
h_axis, w_axis = 2, 3
else:
h_axis, w_axis = 1, 2
height, width = inputs_shape[h_axis], inputs_shape[w_axis]
kernel_h, kernel_w = self.kernel_size
stride_h, stride_w = self.strides
if self.output_padding is None:
out_pad_h = out_pad_w = None
else:
out_pad_h, out_pad_w = self.output_padding
out_height = conv_utils.deconv_output_length(height,
kernel_h,
padding=self.padding,
output_padding=out_pad_h,
stride=stride_h,
dilation=self.dilation_rate[0])
out_width = conv_utils.deconv_output_length(width,
kernel_w,
padding=self.padding,
output_padding=out_pad_w,
stride=stride_w,
dilation=self.dilation_rate[1])
if self.data_format == 'channels_first':
output_shape = (batch_size, self.filters, out_height, out_width)
else:
output_shape = (batch_size, out_height, out_width, self.filters)
output_shape_tensor = array_ops.stack(output_shape)
outputs = K.conv2d_transpose(
inputs,
new_kernel,
output_shape_tensor,
strides=self.strides,
padding=self.padding,
data_format=self.data_format,
dilation_rate=self.dilation_rate)
if not context.executing_eagerly():
out_shape = self.compute_output_shape(inputs.shape)
outputs.set_shape(out_shape)
if self.use_bias:
outputs = tf.nn.bias_add(
outputs,
self.bias,
data_format=conv_utils.convert_data_format(self.data_format, ndim=4))
if self.activation is not None:
return self.activation(outputs)
return outputs
class DenseSN(Dense):
def build(self, input_shape):
super(DenseSN, self).build(input_shape)
self.u = self.add_weight(self.name + '_u',
shape=tuple([1, self.kernel.shape.as_list()[-1]]),
initializer=tf.initializers.RandomNormal(0, 1),
trainable=False)
def compute_spectral_norm(self, W, new_u, W_shape):
new_v = l2normalize(tf.matmul(new_u, tf.transpose(W)))
new_u = l2normalize(tf.matmul(new_v, W))
sigma = tf.matmul(tf.matmul(new_v, W), tf.transpose(new_u))
W_bar = W/sigma
with tf.control_dependencies([self.u.assign(new_u)]):
W_bar = tf.reshape(W_bar, W_shape)
return W_bar
def call(self, inputs):
W_shape = self.kernel.shape.as_list()
W_reshaped = tf.reshape(self.kernel, (-1, W_shape[-1]))
new_kernel = self.compute_spectral_norm(W_reshaped, self.u, W_shape)
rank = len(inputs.shape)
if rank > 2:
outputs = standard_ops.tensordot(inputs, new_kernel, [[rank - 1], [0]])
if not context.executing_eagerly():
shape = inputs.shape.as_list()
output_shape = shape[:-1] + [self.units]
outputs.set_shape(output_shape)
else:
inputs = math_ops.cast(inputs, self._compute_dtype)
if K.is_sparse(inputs):
outputs = sparse_ops.sparse_tensor_dense_matmul(inputs, new_kernel)
else:
outputs = gen_math_ops.mat_mul(inputs, new_kernel)
if self.use_bias:
outputs = tf.nn.bias_add(outputs, self.bias)
if self.activation is not None:
return self.activation(outputs)
return outputs
#Networks Architecture
init = tf.keras.initializers.he_uniform()
def conv2d(layer_input, filters, kernel_size=4, strides=2, padding='same', leaky=True, bnorm=True, sn=True):
if leaky:
Activ = LeakyReLU(alpha=0.2)
else:
Activ = ReLU()
if sn:
d = ConvSN2D(filters, kernel_size=kernel_size, strides=strides, padding=padding, kernel_initializer=init, use_bias=False)(layer_input)
else:
d = Conv2D(filters, kernel_size=kernel_size, strides=strides, padding=padding, kernel_initializer=init, use_bias=False)(layer_input)
if bnorm:
d = BatchNormalization()(d)
d = Activ(d)
return d
def deconv2d(layer_input, layer_res, filters, kernel_size=4, conc=True, scalev=False, bnorm=True, up=True, padding='same', strides=2):
if up:
u = UpSampling2D((1,2))(layer_input)
u = ConvSN2D(filters, kernel_size, strides=(1,1), kernel_initializer=init, use_bias=False, padding=padding)(u)
else:
u = ConvSN2DTranspose(filters, kernel_size, strides=strides, kernel_initializer=init, use_bias=False, padding=padding)(layer_input)
if bnorm:
u = BatchNormalization()(u)
u = LeakyReLU(alpha=0.2)(u)
if conc:
u = Concatenate()([u,layer_res])
return u
#Extract function: splitting spectrograms
def extract_image(im):
im1 = Cropping2D(((0,0), (0, 2*(im.shape[2]//3))))(im)
im2 = Cropping2D(((0,0), (im.shape[2]//3,im.shape[2]//3)))(im)
im3 = Cropping2D(((0,0), (2*(im.shape[2]//3), 0)))(im)
return im1,im2,im3
#Assemble function: concatenating spectrograms
def assemble_image(lsim):
im1,im2,im3 = lsim
imh = Concatenate(2)([im1,im2,im3])
return imh
#U-NET style architecture
def build_generator(input_shape):
h,w,c = input_shape
inp = Input(shape=input_shape)
#downscaling
g0 = tf.keras.layers.ZeroPadding2D((0,1))(inp)
g1 = conv2d(g0, 256, kernel_size=(h,3), strides=1, padding='valid')
g2 = conv2d(g1, 256, kernel_size=(1,9), strides=(1,2))
g3 = conv2d(g2, 256, kernel_size=(1,7), strides=(1,2))
#upscaling
g4 = deconv2d(g3,g2, 256, kernel_size=(1,7), strides=(1,2))
g5 = deconv2d(g4,g1, 256, kernel_size=(1,9), strides=(1,2), bnorm=False)
g6 = ConvSN2DTranspose(1, kernel_size=(h,1), strides=(1,1), kernel_initializer=init, padding='valid', activation='tanh')(g5)
return Model(inp,g6, name='G')
#Siamese Network
def build_siamese(input_shape):
h,w,c = input_shape
inp = Input(shape=input_shape)
g1 = conv2d(inp, 256, kernel_size=(h,3), strides=1, padding='valid', sn=False)
g2 = conv2d(g1, 256, kernel_size=(1,9), strides=(1,2), sn=False)
g3 = conv2d(g2, 256, kernel_size=(1,7), strides=(1,2), sn=False)
g4 = Flatten()(g3)
g5 = Dense(vec_len)(g4)
return Model(inp, g5, name='S')
#Discriminator (Critic) Network
def build_critic(input_shape):
h,w,c = input_shape
inp = Input(shape=input_shape)
g1 = conv2d(inp, 512, kernel_size=(h,3), strides=1, padding='valid', bnorm=False)
g2 = conv2d(g1, 512, kernel_size=(1,9), strides=(1,2), bnorm=False)
g3 = conv2d(g2, 512, kernel_size=(1,7), strides=(1,2), bnorm=False)
g4 = Flatten()(g3)
g4 = DenseSN(1, kernel_initializer=init)(g4)
return Model(inp, g4, name='C')
#Load past models from path to resume training or test
save_model_path = '/content/drive/MyDrive/weights' #@param {type:"string"}
def load(path):
gen = build_generator((hop,shape,1))
siam = build_siamese((hop,shape,1))
critic = build_critic((hop,3*shape,1))
gen.load_weights(path+'/gen.h5')
critic.load_weights(path+'/critic.h5')
siam.load_weights(path+'/siam.h5')
return gen,critic,siam
#Build models
def build():
gen = build_generator((hop,shape,1))
siam = build_siamese((hop,shape,1))
critic = build_critic((hop,3*shape,1)) #the discriminator accepts as input spectrograms of triple the width of those generated by the generator
return gen,critic,siam
#Show results mid-training
def save_test_image_full(path):
a = testgena()
print(a.shape)
ab = gen(a, training=False)
ab = testass(ab)
a = testass(a)
abwv = deprep(ab)
awv = deprep(a)
sf.write(path+'/new_file.wav', abwv, sr)
IPython.display.display(IPython.display.Audio(np.squeeze(abwv), rate=sr))
IPython.display.display(IPython.display.Audio(np.squeeze(awv), rate=sr))
fig, axs = plt.subplots(ncols=2)
axs[0].imshow(np.flip(a, -2), cmap=None)
axs[0].axis('off')
axs[0].set_title('Source')
axs[1].imshow(np.flip(ab, -2), cmap=None)
axs[1].axis('off')
axs[1].set_title('Generated')
plt.show()
#Save in training loop
def save_end(epoch,gloss,closs,mloss,n_save=3,save_path=save_model_path): #use custom save_path (i.e. Drive '../content/drive/My Drive/')
if epoch % n_save == 0:
print('Saving...')
path = f'{save_path}/MELGANVC-{str(gloss)[:9]}-{str(closs)[:9]}-{str(mloss)[:9]}'
os.mkdir(path)
gen.save_weights(path+'/gen.h5')
critic.save_weights(path+'/critic.h5')
siam.save_weights(path+'/siam.h5')
save_test_image_full(path)
#Get models and optimizers
def get_networks(shape, load_model=False, path=None):
if not load_model:
gen,critic,siam = build()
else:
gen,critic,siam = load(path)
print('Built networks')
opt_gen = Adam(0.0001, 0.5)
opt_disc = Adam(0.0001, 0.5)
return gen,critic,siam, [opt_gen,opt_disc]
#Set learning rate
def update_lr(lr):
opt_gen.learning_rate = lr
opt_disc.learning_rate = lr
#Build models and initialize optimizers
load_model_path='MELGANVC-0.4886211-0.5750153-0-20230612T163214Z-001\MELGANVC-0.4886211-0.5750153-0' #@param {type:"string"}
#If load_model=True, specify the path where the models are saved
gen,critic,siam, [opt_gen,opt_disc] = get_networks(shape, load_model=True,path="MELGANVC-0.4886211-0.5750153-0")
#After Training, use these functions to convert data with the generator and save the results
#Assembling generated Spectrogram chunks into final Spectrogram
def specass(a,spec):
but=False
con = np.array([])
nim = a.shape[0]
for i in range(nim-1):
im = a[i]
im = np.squeeze(im)
if not but:
con=im
but=True
else:
con = np.concatenate((con,im), axis=1)
diff = spec.shape[1]-(nim*shape)
a = np.squeeze(a)
con = np.concatenate((con,a[-1,:,-diff:]), axis=1)
return np.squeeze(con)
#Splitting input spectrogram into different chunks to feed to the generator
def chopspec(spec):
dsa=[]
for i in range(spec.shape[1]//shape):
im = spec[:,i*shape:i*shape+shape]
im = np.reshape(im, (im.shape[0],im.shape[1],1))
dsa.append(im)
imlast = spec[:,-shape:]
imlast = np.reshape(imlast, (imlast.shape[0],imlast.shape[1],1))
dsa.append(imlast)
return np.array(dsa, dtype=np.float32)
#Converting from source Spectrogram to target Spectrogram
def towave(spec, name, path='../content/', show=False):
specarr = chopspec(spec)
print(specarr.shape)
a = specarr
print('Generating...')
ab = gen(a, training=False)
print('Assembling and Converting...')
a = specass(a,spec)
ab = specass(ab,spec)
awv = deprep(a)
abwv = deprep(ab)
print('Saving...')
pathfin = f'{path}/{name}'
try:
os.mkdir(pathfin)
except:
pass
sf.write(pathfin+'/AB.wav', abwv, sr)
sf.write(pathfin+'/A.wav', awv, sr)
print('Saved WAV!')
IPython.display.display(IPython.display.Audio(np.squeeze(abwv), rate=sr))
IPython.display.display(IPython.display.Audio(np.squeeze(awv), rate=sr))
if show:
fig, axs = plt.subplots(ncols=2)
axs[0].imshow(np.flip(a, -2), cmap=None)
axs[0].axis('off')
axs[0].set_title('Source')
axs[1].imshow(np.flip(ab, -2), cmap=None)
axs[1].axis('off')
axs[1].set_title('Generated')
plt.show()
return abwv