Winnie-Kay's picture
Update app.py
270f27d
import os
os.system('pip install torch')
os.system('pip install transformers')
os.system('pip install scipy')
os.system('pip install gradio')
import numpy as np
from scipy.special import softmax
import gradio as gr
from transformers import (
AutoTokenizer,
AutoConfig,
AutoModelForSequenceClassification,
TFAutoModelForSequenceClassification)
# Define the model path where the pre-trained model is saved on the Hugging Face model hub
model_path = "Winnie-Kay/Finetuned_bert_model"
# Initialize the tokenizer for the pre-trained model
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Load the configuration for the pre-trained model
config = AutoConfig.from_pretrained(model_path)
# Load the pre-trained model
model = AutoModelForSequenceClassification.from_pretrained(model_path)
# Define a function to preprocess the text data
def preprocess(text):
new_text = []
# Replace user mentions with '@user'
for t in text.split(" "):
t = '@user' if t.startswith('@') and len(t) > 1 else t
# Replace links with 'http'
t = 'http' if t.startswith('http') else t
new_text.append(t)
# Join the preprocessed text
return " ".join(new_text)
# Define a function to perform sentiment analysis on the input text
def sentiment_analysis(text):
# Preprocess the input text
text = preprocess(text)
# Tokenize the input text using the pre-trained tokenizer
encoded_input = tokenizer(text, return_tensors='pt')
# Feed the tokenized input to the pre-trained model and obtain output
output = model(**encoded_input)
# Obtain the prediction scores for the output
scores_ = output[0][0].detach().numpy()
# Apply softmax activation function to obtain probability distribution over the labels
scores_ = softmax(scores_)
# Format the output dictionary with the predicted scores
labels = ['Negative', 'Neutral', 'Positive']
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
# Return the scores
return scores
# Define a Gradio interface to interact with the model
demo = gr.Interface(
fn=sentiment_analysis, # Function to perform sentiment analysis
inputs=gr.Textbox(placeholder="Write your tweet here..."), # Text input field
outputs="label", # Output type (here, we only display the label with the highest score)
interpretation="default", # Interpretation mode
examples=[["Have Fun with it...will be updated soon!"]],# Example input(s) to display on the interface
image=gr.Image("https://www.reputationx.com/hubfs/what-is-sentiment-analysis-cover.jpg"),
css= "body {background-color: black}"
)
# Launch the Gradio interface
demo.launch()