File size: 13,798 Bytes
6a570b5
 
 
 
34f7ee5
4820fc0
6a570b5
 
4820fc0
0837027
 
 
 
 
 
 
 
 
 
6a570b5
 
 
 
 
4820fc0
 
 
01591d1
 
 
 
 
 
 
0837027
 
 
 
 
 
 
 
01591d1
bc604aa
01591d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc604aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01591d1
 
 
bc604aa
 
 
 
 
 
 
 
 
 
01591d1
bc604aa
 
 
 
 
 
 
 
 
 
 
 
 
01591d1
 
 
 
 
 
 
 
 
0837027
 
 
 
6a570b5
 
 
 
4820fc0
6a570b5
 
 
 
 
 
 
 
01591d1
 
 
 
 
 
 
 
6a570b5
 
4820fc0
01591d1
 
 
 
 
 
 
 
 
df9c90f
 
01591d1
 
 
 
 
4820fc0
6a570b5
 
4820fc0
 
df9c90f
 
 
 
 
 
01591d1
 
 
 
 
 
 
6a570b5
01591d1
6a570b5
 
83e5364
 
 
 
 
6a570b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0837027
 
 
 
 
4179d35
0837027
 
6a570b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0837027
6a570b5
 
 
 
 
 
 
 
 
 
0837027
6a570b5
 
 
 
 
 
 
0837027
6a570b5
 
 
 
 
 
0837027
 
 
6a570b5
 
 
 
 
0837027
6a570b5
0837027
6a570b5
 
0837027
 
 
 
 
 
 
 
 
01591d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0837027
6a570b5
 
 
 
232d873
6a570b5
 
 
 
 
 
 
 
0837027
eec1cb9
 
 
 
 
 
232d873
45f5fad
6a570b5
 
 
 
4820fc0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import gradio as gr
import numpy as np
import random

from diffusers import StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetPipeline
from peft import PeftModel, PeftConfig
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"

# Model list including your LoRA model
MODEL_LIST = [
    "CompVis/stable-diffusion-v1-4",
    "stabilityai/sdxl-turbo",
    "runwayml/stable-diffusion-v1-5",
    "stabilityai/stable-diffusion-2-1",
    "YaArtemNosenko/dino_stickers",
]

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

# Cache to avoid re-initializing pipelines repeatedly
model_cache = {}

def load_pipeline(model_id,
                  lora_scale,
                  controlnet_checkbox,
                  controlnet_mode,
                  ip_adapter_checkbox,
                  ip_adapter_scale
                  ):
    """
    Loads or retrieves a cached DiffusionPipeline.
    
    If the chosen model is your LoRA adapter, then load the base model 
    (CompVis/stable-diffusion-v1-4) and apply the LoRA weights.
    """
    if model_id in model_cache:
        return model_cache[model_id]


    if controlnet_checkbox:
        if controlnet_mode == "depth_map":
            controlnet = ControlNetModel.from_pretrained(
                "lllyasviel/sd-controlnet-depth",
                cache_dir="./models_cache",
                torch_dtype=torch_dtype
            )
        elif controlnet_mode == "pose_estimation":
            controlnet = ControlNetModel.from_pretrained(
                "lllyasviel/sd-controlnet-openpose",
                cache_dir="./models_cache",
                torch_dtype=torch_dtype
            )
        elif controlnet_mode == "normal_map":
            controlnet = ControlNetModel.from_pretrained(
                "lllyasviel/sd-controlnet-normal",
                cache_dir="./models_cache",
                torch_dtype=torch_dtype
            )
        elif controlnet_mode == "scribbles":
            controlnet = ControlNetModel.from_pretrained(
                "lllyasviel/sd-controlnet-scribble",
                cache_dir="./models_cache",
                torch_dtype=torch_dtype
            )
        else:
            controlnet = ControlNetModel.from_pretrained(
                "lllyasviel/sd-controlnet-canny",
                cache_dir="./models_cache",
                torch_dtype=torch_dtype
            )
        if model_id == "YaArtemNosenko/dino_stickers":
            # Use the specified base model for your LoRA adapter.
            base_model = "CompVis/stable-diffusion-v1-4"
            # Load the LoRA weights
            pipe = StableDiffusionControlNetPipeline.from_pretrained(base_model, 
                                                                     controlnet=controlnet,
                                                                     torch_dtype=torch_dtype, 
                                                                     safety_checker=None).to(device)
            pipe.unet = PeftModel.from_pretrained(
                pipe.unet, 
                model_id, 
                subfolder="unet", 
                torch_dtype=torch_dtype
            )
            pipe.text_encoder = PeftModel.from_pretrained(
                pipe.text_encoder, 
                model_id, 
                subfolder="text_encoder", 
                torch_dtype=torch_dtype
            )
        else:
            pipe = StableDiffusionControlNetPipeline.from_pretrained(model_id,
                                                                     controlnet=controlnet,
                                                                     torch_dtype=torch_dtype,
                                                                     safety_checker=None).to(device)
        # params['image'] = controlnet_image
        # params['controlnet_conditioning_scale'] = float(controlnet_strength)
    else:
        if model_id == "YaArtemNosenko/dino_stickers":
            base_model = "CompVis/stable-diffusion-v1-4"
            pipe = StableDiffusionPipeline.from_pretrained(base_model, torch_dtype=torch_dtype)
            # Load the LoRA weights
            pipe.unet = PeftModel.from_pretrained(
                                                pipe.unet, 
                                                model_id, 
                                                subfolder="unet", 
                                                torch_dtype=torch_dtype
            )

            pipe.text_encoder = PeftModel.from_pretrained(
                pipe.text_encoder, 
                model_id, 
                subfolder="text_encoder", 
                torch_dtype=torch_dtype
            )
        else:
            pipe = StableDiffusionPipeline.from_pretrained(model_id,
                                                           torch_dtype=torch_dtype,
                                                           safety_checker=None).to(device)

            pipe.unet.load_state_dict({k: lora_scale * v for k, v in pipe.unet.state_dict().items()})
            pipe.text_encoder.load_state_dict({k: lora_scale * v for k, v in pipe.text_encoder.state_dict().items()})

    if ip_adapter_checkbox:
        pipe.load_ip_adapter("h94/IP-Adapter",
                             subfolder="models",
                             weight_name="ip-adapter-plus_sd15.bin"
                             )
        pipe.set_ip_adapter_scale(ip_adapter_scale)
        # params['ip_adapter_image'] = ip_adapter_image

    pipe.to(device)
    model_cache[model_id] = pipe
    return pipe

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def infer(
    model_id,
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    lora_scale,                         # New parameter for adjusting LoRA scale
    controlnet_checkbox=False,          # используем ли мы controlnet
    controlnet_conditioning_scale=0.0,  # вес для controlnet
    controlnet_mode="edge_detection",   # вариант controlnet
    controlnet_image=None,              # картинка для controlnet
    ip_adapter_checkbox=False,          # используется ли ip адаптера
    ip_adapter_scale=0.0,               # вес для ip адаптера
    ip_adapter_image=None,              # картинка для ip адаптера
    progress=gr.Progress(track_tqdm=True),
):
    # Load the pipeline for the chosen model
    generator = torch.Generator(device=device).manual_seed(seed)
    params = {'prompt': prompt,
              'negative_prompt': negative_prompt,
              'guidance_scale': guidance_scale,
              'num_inference_steps': num_inference_steps,
              'width': width,
              'height': height,
              'generator': generator
              }
    pipe = load_pipeline(model_id,
                         lora_scale,
                         controlnet_checkbox,
                         controlnet_mode,
                         ip_adapter_checkbox,
                         ip_adapter_scale
                         )

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    # If using the LoRA model, update the LoRA scale if supported.
    # if model_id == "YaArtemNosenko/dino_stickers":
    #     # This assumes your pipeline's unet has a method to update the LoRA scale.
    #     if hasattr(pipe.unet, "set_lora_scale"):
    #         pipe.unet.set_lora_scale(lora_scale)
    #     else:
    #         print("Warning: LoRA scale adjustment method not found on UNet.")
    # если используем controlnet
    if controlnet_checkbox:
        params['image'] = controlnet_image
        params['controlnet_conditioning_scale'] = float(controlnet_conditioning_scale)
    # если используем IP адаптер
    if ip_adapter_checkbox:
        params['ip_adapter_image'] = ip_adapter_image

    image = pipe(**params).images[0]
    return image, seed


def controlnet_params(show_extra):
    return gr.update(visible=show_extra)


examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio Template")

        with gr.Row():
            # Dropdown to select the model from Hugging Face
            model_id = gr.Dropdown(
                label="Model",
                choices=MODEL_LIST,
                value=MODEL_LIST[0],  # Default model
            )

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,  # Default seed
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=20.0,
                    step=0.5,
                    value=7.0,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=20,
                )

            # New slider for LoRA scale.
            lora_scale = gr.Slider(
                label="LoRA Scale",
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.0,
                info="Adjust the influence of the LoRA weights",
            )
        with gr.Row():
            controlnet_checkbox = gr.Checkbox(
                label="ControlNet",
                value=False
            )
            with gr.Column(visible=False) as controlnet_params:
                controlnet_conditioning_scale = gr.Slider(
                    label="ControlNet conditioning scale",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.01,
                    value=1.0,  
                )
                controlnet_mode = gr.Dropdown(
                    label="ControlNet mode",
                    choices=["edge_detection", 
                             "depth_map",
                             "pose_estimation", 
                             "normal_map",
                             "scribbles"],
                    value="edge_detection",
                    max_choices=1
                )
                controlnet_image = gr.Image(
                    label="ControlNet condition image",
                    type="pil",
                    format="png"
                )
            controlnet_checkbox.change(
                    fn=lambda x: gr.Row.update(visible=x),
                    inputs=controlnet_checkbox,
                    outputs=controlnet_params
            )
        with gr.Row():
            ip_adapter_checkbox = gr.Checkbox(
                label="IPAdapter",
                value=False
            )
            with gr.Column(visible=False) as ip_adapter_params:
                ip_adapter_scale = gr.Slider(
                    label="IPAdapter scale",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.01,
                    value=1.0,  
                )
                ip_adapter_image = gr.Image(
                    label="IPAdapter condition image",
                    type="pil"
                )
            ip_adapter_checkbox.change(
                fn=lambda x: gr.Row.update(visible=x),
                inputs=ip_adapter_checkbox,
                outputs=ip_adapter_params
            )

        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[model_id,
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            lora_scale,  # Pass the new slider value
            controlnet_checkbox,
            controlnet_conditioning_scale,
            controlnet_mode,
            controlnet_image,
            ip_adapter_checkbox,
            ip_adapter_scale,
            ip_adapter_image
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()