Spaces:
Sleeping
Sleeping
File size: 13,798 Bytes
6a570b5 34f7ee5 4820fc0 6a570b5 4820fc0 0837027 6a570b5 4820fc0 01591d1 0837027 01591d1 bc604aa 01591d1 bc604aa 01591d1 bc604aa 01591d1 bc604aa 01591d1 0837027 6a570b5 4820fc0 6a570b5 01591d1 6a570b5 4820fc0 01591d1 df9c90f 01591d1 4820fc0 6a570b5 4820fc0 df9c90f 01591d1 6a570b5 01591d1 6a570b5 83e5364 6a570b5 0837027 4179d35 0837027 6a570b5 0837027 6a570b5 0837027 6a570b5 0837027 6a570b5 0837027 6a570b5 0837027 6a570b5 0837027 6a570b5 0837027 01591d1 0837027 6a570b5 232d873 6a570b5 0837027 eec1cb9 232d873 45f5fad 6a570b5 4820fc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
import gradio as gr
import numpy as np
import random
from diffusers import StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetPipeline
from peft import PeftModel, PeftConfig
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
# Model list including your LoRA model
MODEL_LIST = [
"CompVis/stable-diffusion-v1-4",
"stabilityai/sdxl-turbo",
"runwayml/stable-diffusion-v1-5",
"stabilityai/stable-diffusion-2-1",
"YaArtemNosenko/dino_stickers",
]
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
# Cache to avoid re-initializing pipelines repeatedly
model_cache = {}
def load_pipeline(model_id,
lora_scale,
controlnet_checkbox,
controlnet_mode,
ip_adapter_checkbox,
ip_adapter_scale
):
"""
Loads or retrieves a cached DiffusionPipeline.
If the chosen model is your LoRA adapter, then load the base model
(CompVis/stable-diffusion-v1-4) and apply the LoRA weights.
"""
if model_id in model_cache:
return model_cache[model_id]
if controlnet_checkbox:
if controlnet_mode == "depth_map":
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-depth",
cache_dir="./models_cache",
torch_dtype=torch_dtype
)
elif controlnet_mode == "pose_estimation":
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-openpose",
cache_dir="./models_cache",
torch_dtype=torch_dtype
)
elif controlnet_mode == "normal_map":
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-normal",
cache_dir="./models_cache",
torch_dtype=torch_dtype
)
elif controlnet_mode == "scribbles":
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-scribble",
cache_dir="./models_cache",
torch_dtype=torch_dtype
)
else:
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-canny",
cache_dir="./models_cache",
torch_dtype=torch_dtype
)
if model_id == "YaArtemNosenko/dino_stickers":
# Use the specified base model for your LoRA adapter.
base_model = "CompVis/stable-diffusion-v1-4"
# Load the LoRA weights
pipe = StableDiffusionControlNetPipeline.from_pretrained(base_model,
controlnet=controlnet,
torch_dtype=torch_dtype,
safety_checker=None).to(device)
pipe.unet = PeftModel.from_pretrained(
pipe.unet,
model_id,
subfolder="unet",
torch_dtype=torch_dtype
)
pipe.text_encoder = PeftModel.from_pretrained(
pipe.text_encoder,
model_id,
subfolder="text_encoder",
torch_dtype=torch_dtype
)
else:
pipe = StableDiffusionControlNetPipeline.from_pretrained(model_id,
controlnet=controlnet,
torch_dtype=torch_dtype,
safety_checker=None).to(device)
# params['image'] = controlnet_image
# params['controlnet_conditioning_scale'] = float(controlnet_strength)
else:
if model_id == "YaArtemNosenko/dino_stickers":
base_model = "CompVis/stable-diffusion-v1-4"
pipe = StableDiffusionPipeline.from_pretrained(base_model, torch_dtype=torch_dtype)
# Load the LoRA weights
pipe.unet = PeftModel.from_pretrained(
pipe.unet,
model_id,
subfolder="unet",
torch_dtype=torch_dtype
)
pipe.text_encoder = PeftModel.from_pretrained(
pipe.text_encoder,
model_id,
subfolder="text_encoder",
torch_dtype=torch_dtype
)
else:
pipe = StableDiffusionPipeline.from_pretrained(model_id,
torch_dtype=torch_dtype,
safety_checker=None).to(device)
pipe.unet.load_state_dict({k: lora_scale * v for k, v in pipe.unet.state_dict().items()})
pipe.text_encoder.load_state_dict({k: lora_scale * v for k, v in pipe.text_encoder.state_dict().items()})
if ip_adapter_checkbox:
pipe.load_ip_adapter("h94/IP-Adapter",
subfolder="models",
weight_name="ip-adapter-plus_sd15.bin"
)
pipe.set_ip_adapter_scale(ip_adapter_scale)
# params['ip_adapter_image'] = ip_adapter_image
pipe.to(device)
model_cache[model_id] = pipe
return pipe
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(
model_id,
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale, # New parameter for adjusting LoRA scale
controlnet_checkbox=False, # используем ли мы controlnet
controlnet_conditioning_scale=0.0, # вес для controlnet
controlnet_mode="edge_detection", # вариант controlnet
controlnet_image=None, # картинка для controlnet
ip_adapter_checkbox=False, # используется ли ip адаптера
ip_adapter_scale=0.0, # вес для ip адаптера
ip_adapter_image=None, # картинка для ip адаптера
progress=gr.Progress(track_tqdm=True),
):
# Load the pipeline for the chosen model
generator = torch.Generator(device=device).manual_seed(seed)
params = {'prompt': prompt,
'negative_prompt': negative_prompt,
'guidance_scale': guidance_scale,
'num_inference_steps': num_inference_steps,
'width': width,
'height': height,
'generator': generator
}
pipe = load_pipeline(model_id,
lora_scale,
controlnet_checkbox,
controlnet_mode,
ip_adapter_checkbox,
ip_adapter_scale
)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# If using the LoRA model, update the LoRA scale if supported.
# if model_id == "YaArtemNosenko/dino_stickers":
# # This assumes your pipeline's unet has a method to update the LoRA scale.
# if hasattr(pipe.unet, "set_lora_scale"):
# pipe.unet.set_lora_scale(lora_scale)
# else:
# print("Warning: LoRA scale adjustment method not found on UNet.")
# если используем controlnet
if controlnet_checkbox:
params['image'] = controlnet_image
params['controlnet_conditioning_scale'] = float(controlnet_conditioning_scale)
# если используем IP адаптер
if ip_adapter_checkbox:
params['ip_adapter_image'] = ip_adapter_image
image = pipe(**params).images[0]
return image, seed
def controlnet_params(show_extra):
return gr.update(visible=show_extra)
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image Gradio Template")
with gr.Row():
# Dropdown to select the model from Hugging Face
model_id = gr.Dropdown(
label="Model",
choices=MODEL_LIST,
value=MODEL_LIST[0], # Default model
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42, # Default seed
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=20.0,
step=0.5,
value=7.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=20,
)
# New slider for LoRA scale.
lora_scale = gr.Slider(
label="LoRA Scale",
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
info="Adjust the influence of the LoRA weights",
)
with gr.Row():
controlnet_checkbox = gr.Checkbox(
label="ControlNet",
value=False
)
with gr.Column(visible=False) as controlnet_params:
controlnet_conditioning_scale = gr.Slider(
label="ControlNet conditioning scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=1.0,
)
controlnet_mode = gr.Dropdown(
label="ControlNet mode",
choices=["edge_detection",
"depth_map",
"pose_estimation",
"normal_map",
"scribbles"],
value="edge_detection",
max_choices=1
)
controlnet_image = gr.Image(
label="ControlNet condition image",
type="pil",
format="png"
)
controlnet_checkbox.change(
fn=lambda x: gr.Row.update(visible=x),
inputs=controlnet_checkbox,
outputs=controlnet_params
)
with gr.Row():
ip_adapter_checkbox = gr.Checkbox(
label="IPAdapter",
value=False
)
with gr.Column(visible=False) as ip_adapter_params:
ip_adapter_scale = gr.Slider(
label="IPAdapter scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=1.0,
)
ip_adapter_image = gr.Image(
label="IPAdapter condition image",
type="pil"
)
ip_adapter_checkbox.change(
fn=lambda x: gr.Row.update(visible=x),
inputs=ip_adapter_checkbox,
outputs=ip_adapter_params
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[model_id,
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale, # Pass the new slider value
controlnet_checkbox,
controlnet_conditioning_scale,
controlnet_mode,
controlnet_image,
ip_adapter_checkbox,
ip_adapter_scale,
ip_adapter_image
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch() |