Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import random | |
from diffusers import StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetPipeline | |
from peft import PeftModel, PeftConfig | |
import torch | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Model list including your LoRA model | |
MODEL_LIST = [ | |
"CompVis/stable-diffusion-v1-4", | |
"stabilityai/sdxl-turbo", | |
"runwayml/stable-diffusion-v1-5", | |
"stabilityai/stable-diffusion-2-1", | |
"YaArtemNosenko/dino_stickers", | |
] | |
if torch.cuda.is_available(): | |
torch_dtype = torch.float16 | |
else: | |
torch_dtype = torch.float32 | |
# Cache to avoid re-initializing pipelines repeatedly | |
model_cache = {} | |
def load_pipeline(model_id, | |
lora_scale, | |
controlnet_checkbox, | |
controlnet_mode, | |
ip_adapter_checkbox, | |
ip_adapter_scale | |
): | |
""" | |
Loads or retrieves a cached DiffusionPipeline. | |
If the chosen model is your LoRA adapter, then load the base model | |
(CompVis/stable-diffusion-v1-4) and apply the LoRA weights. | |
""" | |
if model_id in model_cache: | |
return model_cache[model_id] | |
if controlnet_checkbox: | |
if controlnet_mode == "depth_map": | |
controlnet = ControlNetModel.from_pretrained( | |
"lllyasviel/sd-controlnet-depth", | |
cache_dir="./models_cache", | |
torch_dtype=torch_dtype | |
) | |
elif controlnet_mode == "pose_estimation": | |
controlnet = ControlNetModel.from_pretrained( | |
"lllyasviel/sd-controlnet-openpose", | |
cache_dir="./models_cache", | |
torch_dtype=torch_dtype | |
) | |
elif controlnet_mode == "normal_map": | |
controlnet = ControlNetModel.from_pretrained( | |
"lllyasviel/sd-controlnet-normal", | |
cache_dir="./models_cache", | |
torch_dtype=torch_dtype | |
) | |
elif controlnet_mode == "scribbles": | |
controlnet = ControlNetModel.from_pretrained( | |
"lllyasviel/sd-controlnet-scribble", | |
cache_dir="./models_cache", | |
torch_dtype=torch_dtype | |
) | |
else: | |
controlnet = ControlNetModel.from_pretrained( | |
"lllyasviel/sd-controlnet-canny", | |
cache_dir="./models_cache", | |
torch_dtype=torch_dtype | |
) | |
if model_id == "YaArtemNosenko/dino_stickers": | |
# Use the specified base model for your LoRA adapter. | |
base_model = "CompVis/stable-diffusion-v1-4" | |
# Load the LoRA weights | |
pipe = StableDiffusionControlNetPipeline.from_pretrained(base_model, | |
controlnet=controlnet, | |
torch_dtype=torch_dtype, | |
safety_checker=None).to(device) | |
pipe.unet = PeftModel.from_pretrained( | |
pipe.unet, | |
model_id, | |
subfolder="unet", | |
torch_dtype=torch_dtype | |
) | |
pipe.text_encoder = PeftModel.from_pretrained( | |
pipe.text_encoder, | |
model_id, | |
subfolder="text_encoder", | |
torch_dtype=torch_dtype | |
) | |
else: | |
pipe = StableDiffusionControlNetPipeline.from_pretrained(model_id, | |
controlnet=controlnet, | |
torch_dtype=torch_dtype, | |
safety_checker=None).to(device) | |
# params['image'] = controlnet_image | |
# params['controlnet_conditioning_scale'] = float(controlnet_strength) | |
else: | |
if model_id == "YaArtemNosenko/dino_stickers": | |
base_model = "CompVis/stable-diffusion-v1-4" | |
pipe = StableDiffusionPipeline.from_pretrained(base_model, torch_dtype=torch_dtype) | |
# Load the LoRA weights | |
pipe.unet = PeftModel.from_pretrained( | |
pipe.unet, | |
model_id, | |
subfolder="unet", | |
torch_dtype=torch_dtype | |
) | |
pipe.text_encoder = PeftModel.from_pretrained( | |
pipe.text_encoder, | |
model_id, | |
subfolder="text_encoder", | |
torch_dtype=torch_dtype | |
) | |
else: | |
pipe = StableDiffusionPipeline.from_pretrained(model_id, | |
torch_dtype=torch_dtype, | |
safety_checker=None).to(device) | |
pipe.unet.load_state_dict({k: lora_scale * v for k, v in pipe.unet.state_dict().items()}) | |
pipe.text_encoder.load_state_dict({k: lora_scale * v for k, v in pipe.text_encoder.state_dict().items()}) | |
if ip_adapter_checkbox: | |
pipe.load_ip_adapter("h94/IP-Adapter", | |
subfolder="models", | |
weight_name="ip-adapter-plus_sd15.bin" | |
) | |
pipe.set_ip_adapter_scale(ip_adapter_scale) | |
# params['ip_adapter_image'] = ip_adapter_image | |
pipe.to(device) | |
model_cache[model_id] = pipe | |
return pipe | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def infer( | |
model_id, | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
lora_scale, # New parameter for adjusting LoRA scale | |
controlnet_checkbox=False, # используем ли мы controlnet | |
controlnet_conditioning_scale=0.0, # вес для controlnet | |
controlnet_mode="edge_detection", # вариант controlnet | |
controlnet_image=None, # картинка для controlnet | |
ip_adapter_checkbox=False, # используется ли ip адаптера | |
ip_adapter_scale=0.0, # вес для ip адаптера | |
ip_adapter_image=None, # картинка для ip адаптера | |
progress=gr.Progress(track_tqdm=True), | |
): | |
# Load the pipeline for the chosen model | |
generator = torch.Generator(device=device).manual_seed(seed) | |
params = {'prompt': prompt, | |
'negative_prompt': negative_prompt, | |
'guidance_scale': guidance_scale, | |
'num_inference_steps': num_inference_steps, | |
'width': width, | |
'height': height, | |
'generator': generator | |
} | |
pipe = load_pipeline(model_id, | |
lora_scale, | |
controlnet_checkbox, | |
controlnet_mode, | |
ip_adapter_checkbox, | |
ip_adapter_scale | |
) | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
# If using the LoRA model, update the LoRA scale if supported. | |
# if model_id == "YaArtemNosenko/dino_stickers": | |
# # This assumes your pipeline's unet has a method to update the LoRA scale. | |
# if hasattr(pipe.unet, "set_lora_scale"): | |
# pipe.unet.set_lora_scale(lora_scale) | |
# else: | |
# print("Warning: LoRA scale adjustment method not found on UNet.") | |
# если используем controlnet | |
if controlnet_checkbox: | |
params['image'] = controlnet_image | |
params['controlnet_conditioning_scale'] = float(controlnet_conditioning_scale) | |
# если используем IP адаптер | |
if ip_adapter_checkbox: | |
params['ip_adapter_image'] = ip_adapter_image | |
image = pipe(**params).images[0] | |
return image, seed | |
def controlnet_params(show_extra): | |
return gr.update(visible=show_extra) | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(" # Text-to-Image Gradio Template") | |
with gr.Row(): | |
# Dropdown to select the model from Hugging Face | |
model_id = gr.Dropdown( | |
label="Model", | |
choices=MODEL_LIST, | |
value=MODEL_LIST[0], # Default model | |
) | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0, variant="primary") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, # Default seed | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=20.0, | |
step=0.5, | |
value=7.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=20, | |
) | |
# New slider for LoRA scale. | |
lora_scale = gr.Slider( | |
label="LoRA Scale", | |
minimum=0.0, | |
maximum=2.0, | |
step=0.1, | |
value=1.0, | |
info="Adjust the influence of the LoRA weights", | |
) | |
with gr.Row(): | |
controlnet_checkbox = gr.Checkbox( | |
label="ControlNet", | |
value=False | |
) | |
with gr.Column(visible=False) as controlnet_params: | |
controlnet_conditioning_scale = gr.Slider( | |
label="ControlNet conditioning scale", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.01, | |
value=1.0, | |
) | |
controlnet_mode = gr.Dropdown( | |
label="ControlNet mode", | |
choices=["edge_detection", | |
"depth_map", | |
"pose_estimation", | |
"normal_map", | |
"scribbles"], | |
value="edge_detection", | |
max_choices=1 | |
) | |
controlnet_image = gr.Image( | |
label="ControlNet condition image", | |
type="pil", | |
format="png" | |
) | |
controlnet_checkbox.change( | |
fn=lambda x: gr.Row.update(visible=x), | |
inputs=controlnet_checkbox, | |
outputs=controlnet_params | |
) | |
with gr.Row(): | |
ip_adapter_checkbox = gr.Checkbox( | |
label="IPAdapter", | |
value=False | |
) | |
with gr.Column(visible=False) as ip_adapter_params: | |
ip_adapter_scale = gr.Slider( | |
label="IPAdapter scale", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.01, | |
value=1.0, | |
) | |
ip_adapter_image = gr.Image( | |
label="IPAdapter condition image", | |
type="pil" | |
) | |
ip_adapter_checkbox.change( | |
fn=lambda x: gr.Row.update(visible=x), | |
inputs=ip_adapter_checkbox, | |
outputs=ip_adapter_params | |
) | |
gr.Examples(examples=examples, inputs=[prompt]) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[model_id, | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
lora_scale, # Pass the new slider value | |
controlnet_checkbox, | |
controlnet_conditioning_scale, | |
controlnet_mode, | |
controlnet_image, | |
ip_adapter_checkbox, | |
ip_adapter_scale, | |
ip_adapter_image | |
], | |
outputs=[result, seed], | |
) | |
if __name__ == "__main__": | |
demo.launch() |