File size: 47,807 Bytes
5716f29
 
 
 
 
 
 
 
 
 
8bb4ece
 
 
 
0db3082
5716f29
 
a5d11e6
136ef64
 
 
 
 
 
 
 
 
 
 
a0fc76f
7453fdd
 
 
 
 
 
 
 
 
 
a0fc76f
 
7453fdd
 
51d0b60
 
 
d2bd325
7453fdd
 
 
 
a0fc76f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbc0050
 
7453fdd
 
 
 
 
 
 
 
cbc0050
 
 
 
 
 
 
 
 
 
 
a96e60b
 
 
 
 
 
5716f29
 
cf7d33a
5716f29
 
 
 
c04779d
5716f29
5e5dbac
a53c104
 
8005192
d8c2f55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78c832c
d8c2f55
 
78c832c
 
 
 
 
 
 
 
 
 
ae5e91a
78c832c
 
d8c2f55
78c832c
d8c2f55
 
 
 
0db3082
5716f29
9266c27
 
 
 
7dd6902
9266c27
 
 
5716f29
d8c2f55
 
 
 
 
 
 
 
db652ad
 
 
 
d8c2f55
db652ad
78c832c
db652ad
 
 
78c832c
db652ad
 
321d2f5
acc3dd8
321d2f5
 
9266c27
7dd6902
321d2f5
 
 
5716f29
cc5bade
5716f29
 
8e4e9db
5716f29
 
 
 
 
d8c2f55
5716f29
7a7dd74
78c832c
5716f29
 
 
45365f8
5716f29
 
78c832c
d8c2f55
 
 
78c832c
d8c2f55
 
 
5716f29
5cafd71
5716f29
d8c2f55
5716f29
f86a704
ca4f3ac
78c832c
 
 
 
 
 
 
 
 
 
d8c2f55
 
 
 
 
5716f29
 
45365f8
78c832c
5716f29
78c832c
 
ae5e91a
5716f29
 
 
 
 
 
 
 
 
 
 
3ed34b1
5716f29
 
caf1e7f
5716f29
 
 
3ed34b1
8bb4ece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5716f29
 
6a0c780
5716f29
 
 
6a0c780
5716f29
 
 
6a0c780
 
 
 
 
 
5716f29
6a0c780
 
 
 
 
 
 
 
 
8bb4ece
 
 
 
 
6a0c780
8bb4ece
 
 
 
6a0c780
 
 
5716f29
6a0c780
 
5716f29
 
 
3bde9b5
5716f29
 
 
8e4e9db
d8c2f55
 
 
 
 
 
d155b1c
5716f29
 
d155b1c
5716f29
 
 
 
 
db3e449
5716f29
 
 
 
 
 
 
 
 
 
d8c2f55
c16dfb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69c4a67
5716f29
 
d155b1c
5716f29
 
 
 
 
 
 
 
c16dfb4
 
 
8bb4ece
 
c16dfb4
 
 
 
a73f17c
 
 
8bb4ece
a73f17c
 
 
 
c16dfb4
 
 
 
 
 
 
 
5716f29
 
 
d155b1c
5716f29
 
 
 
d155b1c
5716f29
 
 
 
 
d155b1c
5716f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7dd74
5716f29
 
 
 
 
 
c16dfb4
 
 
8bb4ece
c16dfb4
 
 
 
a73f17c
 
8bb4ece
 
69c4a67
a73f17c
 
 
c16dfb4
 
 
 
 
 
 
 
5716f29
 
 
116725d
5716f29
 
 
 
116725d
5716f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116725d
8bb4ece
5716f29
 
 
 
 
 
 
d8c2f55
 
8e4e9db
5716f29
 
 
 
 
 
 
 
 
 
 
 
 
 
8e4e9db
5716f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e4e9db
ca4f3ac
5716f29
 
 
d8c2f55
 
5716f29
acc3dd8
d8c2f55
5716f29
 
 
 
 
d8c2f55
5716f29
 
 
 
d8c2f55
5716f29
 
 
 
 
 
 
d8c2f55
 
5716f29
8e4e9db
5716f29
d8c2f55
5716f29
 
d8c2f55
5716f29
 
 
 
 
d8c2f55
5716f29
78c832c
5716f29
 
 
8e4e9db
d8c2f55
5716f29
 
 
 
 
 
 
 
 
ef6db6b
5716f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e4e9db
5716f29
 
 
 
 
 
 
 
 
 
8e4e9db
5716f29
 
 
 
 
 
 
 
 
7a7dd74
d8c2f55
5716f29
 
96396bc
5716f29
 
 
55bded4
5716f29
 
 
96396bc
5716f29
 
 
 
 
 
 
 
96396bc
5716f29
8e4e9db
5716f29
d8c2f55
5716f29
 
d8c2f55
5716f29
 
 
96396bc
5716f29
 
 
78c832c
5716f29
 
 
 
 
 
 
 
1ceff46
5716f29
 
 
 
1ceff46
5716f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ceff46
5716f29
902764c
5716f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96396bc
5716f29
 
 
96396bc
5716f29
 
 
 
 
96396bc
5716f29
 
 
 
 
 
 
96396bc
5716f29
 
 
96396bc
5716f29
 
 
 
 
 
 
 
1ceff46
5716f29
 
 
 
1ceff46
5716f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ceff46
5716f29
1ceff46
5716f29
 
 
 
 
 
1ceff46
5716f29
96396bc
5716f29
 
 
 
 
 
 
 
 
 
 
 
96396bc
5716f29
 
 
96396bc
5716f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e4e9db
5716f29
d8c2f55
5716f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8c2f55
5716f29
d8c2f55
5716f29
 
 
 
 
 
d8c2f55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5716f29
 
d8c2f55
5716f29
d8c2f55
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
import streamlit as st
import json
import ee
import os
import pandas as pd
import geopandas as gpd
from datetime import datetime
import leafmap.foliumap as leafmap
import re
from shapely.geometry import base
# from lxml import etree
# from xml.etree import ElementTree as ET
from xml.etree import ElementTree as XET  


# Set up the page layout
st.set_page_config(layout="wide")

# Custom button styling
m = st.markdown(
    """
    <style>
    div.stButton > button:first-child {
        background-color: #006400;
        color:#ffffff;
    }
    </style>""",
    unsafe_allow_html=True,
)

# Logo
st.write(
    f"""
    <div style="display: flex; justify-content: space-between; align-items: center;">
        <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/ISRO_Logo.png" style="width: 20%; margin-right: auto;">
        <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/SAC_Logo.png" style="width: 20%; margin-left: auto;">
    </div>
    """,
    unsafe_allow_html=True,
)

# Title
st.markdown(
    f"""
    <div style="display: flex; flex-direction: column; align-items: center;">
        <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/BHOOMI_1.png" style="width: 20%;">
        <h3 style="text-align: center; margin: 0;">(Bandwise Harmonization & Optimized Output for multispectral integration)</h3>
    </div>
    <hr>
    """,
    unsafe_allow_html=True,
)
# st.markdown(
#     f"""
#     <div style="text-align: center; background-image: url('https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/B1.jpg'); background-size: cover; padding: 20px;">
#         <h1 style="display: inline-block; margin: 0;">
#             <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/B1.png" style="width: 20%; vertical-align: middle; margin-right: 10px;">
#             BHOOMI
#         </h1>
#         <h3 style="margin: 0;">(Bandwise Harmonization & Optimized Output for multispectral integration)</h3>
#     </div>
#     <hr>
#     """,
#     unsafe_allow_html=True,
# )
# st.write("<h4><div style='text-align: center;'>User Inputs</div></h4>", unsafe_allow_html=True)

# st.markdown(
#     f"""
#     <div style="position: relative; text-align: center; padding: 20px;">
#         <div style="background-image: url('https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/B1.jpg'); background-size: cover; position: absolute; top: 0; left: 0; right: 0; bottom: 0; z-index: 1;"></div>
#         <div style="background-color: rgba(255, 255, 255, 0.2); position: absolute; top: 0; left: 0; right: 0; bottom: 0; z-index: 2;"></div>
#         <div style="position: relative; z-index: 3;">
#             <div style="display: flex; justify-content: space-between; align-items: center;">
#                 <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/ISRO_Logo.png" style="width: 20%; margin-right: auto;">
#                 <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/SAC_Logo.png" style="width: 20%; margin-left: auto;">
#             </div>
#             <h1 style="display: inline-block; margin: 0;">
#                 BHOOMI
#             </h1>
#             <h3 style="margin: 0;">(Bandwise Harmonization & Optimized Output for multispectral integration)</h3>
#         </div>
#     </div>
#     <hr>
#     """,
#     unsafe_allow_html=True,
# )

st.markdown(
    f"""
    <h4 style="text-align: center;">User Inputs</h4>
    """,
    unsafe_allow_html=True,
)
# Authenticate and initialize Earth Engine
earthengine_credentials = os.environ.get("EE_Authentication")

# Initialize Earth Engine with secret credentials
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
    f.write(earthengine_credentials)

ee.Initialize(project='ee-yashsacisro24')

st.write("<h5>Image Collection</h5>", unsafe_allow_html=True)

# Imagery base selection
imagery_base = st.selectbox("Select Imagery Base", ["Sentinel", "Landsat", "MODIS", "Custom Input"], index=0)

# Load the appropriate dataset based on imagery base
if imagery_base == "Sentinel":
    dataset_file = "sentinel_datasets.json"
    with open(dataset_file) as f:
        data = json.load(f)
elif imagery_base == "Landsat":
    dataset_file = "landsat_datasets.json"
    with open(dataset_file) as f:
        data = json.load(f)
elif imagery_base == "MODIS":
    dataset_file = "modis_datasets.json"
    with open(dataset_file) as f:
        data = json.load(f)
elif imagery_base == "Custom Input":
    custom_dataset_id = st.text_input("Enter Custom Earth Engine Dataset ID (e.g., ee.ImageCollection('AHN/AHN4'))", value="")
    if custom_dataset_id:
        try:
            # Remove potential "ee.ImageCollection()" wrapper for simplicity
            if custom_dataset_id.startswith("ee.ImageCollection("):
                custom_dataset_id = custom_dataset_id.replace("ee.ImageCollection('", "").replace("')", "")
            # Fetch dataset info from GEE
            collection = ee.ImageCollection(custom_dataset_id)
            band_names = collection.first().bandNames().getInfo()
            data = {
                f"Custom Dataset: {custom_dataset_id}": {
                    "sub_options": {custom_dataset_id: f"Custom Dataset ({custom_dataset_id})"},
                    "bands": {custom_dataset_id: band_names}
                }
            }
            st.write(f"Fetched bands for {custom_dataset_id}: {', '.join(band_names)}")
        except Exception as e:
            st.error(f"Error fetching dataset: {str(e)}. Please check the dataset ID and ensure it's valid in Google Earth Engine.")
            data = {}
    else:
        st.warning("Please enter a custom dataset ID to proceed.")
        data = {}

# Display the title for the Streamlit app
# st.title(f"{imagery_base} Dataset")
st.markdown(
    f"""
    <hr>
    <h5><b>{imagery_base} Dataset</b></h5>
    """,
    unsafe_allow_html=True,
)
# Select dataset category (main selection)
if data:
    main_selection = st.selectbox(f"Select {imagery_base} Dataset Category", list(data.keys()))
else:
    main_selection = None

# Initialize sub_selection and dataset_id as None
sub_selection = None
dataset_id = None

# If a category is selected, display the sub-options (specific datasets)
if main_selection:
    sub_options = data[main_selection]["sub_options"]
    sub_selection = st.selectbox(f"Select Specific {imagery_base} Dataset ID", list(sub_options.keys()))

    # Display the selected dataset ID based on user input
    if sub_selection:
        st.write(f"You selected: {main_selection} -> {sub_options[sub_selection]}")
        st.write(f"Dataset ID: {sub_selection}")
        dataset_id = sub_selection  # Use the key directly as the dataset ID

# Earth Engine Index Calculator Section
# st.header("Earth Engine Index Calculator")

st.markdown(
    f"""
    <hr>
    <h5><b>Earth Engine Index Calculator</b></h5>
    """,
    unsafe_allow_html=True,
)
# Load band information based on selected dataset
if main_selection and sub_selection:
    dataset_bands = data[main_selection]["bands"].get(sub_selection, [])
    st.write(f"Available Bands for {sub_options[sub_selection]}: {', '.join(dataset_bands)}")

    # Allow user to select 1 or 2 bands
    selected_bands = st.multiselect(
        "Select 1 or 2 Bands for Calculation",
        options=dataset_bands,
        default=[dataset_bands[0]] if dataset_bands else [],
        help=f"Select 1 or 2 bands from: {', '.join(dataset_bands)}"
    )

    # Ensure minimum 1 and maximum 2 bands are selected
    if len(selected_bands) < 1:
        st.warning("Please select at least one band.")
        st.stop()

    # Show custom formula input if bands are selected
    if selected_bands:
        # Provide a default formula based on the number of selected bands
        if len(selected_bands) == 1:
            default_formula = f"{selected_bands[0]}"
            example = f"'{selected_bands[0]} * 2' or '{selected_bands[0]} + 1'"
        else:  # len(selected_bands) == 2
            default_formula = f"({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})"
            example = f"'{selected_bands[0]} * {selected_bands[1]} / 2' or '({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})'"

        custom_formula = st.text_input(
            "Enter Custom Formula (e.g (B8 - B4) / (B8 + B4) , B4*B3/2)",
            value=default_formula,
            help=f"Use only these bands: {', '.join(selected_bands)}. Examples: {example}"
        )

        # Validate the formula
        def validate_formula(formula, selected_bands):
            allowed_chars = set(" +-*/()0123456789.")
            terms = re.findall(r'[a-zA-Z][a-zA-Z0-9_]*', formula)
            invalid_terms = [term for term in terms if term not in selected_bands]
            if invalid_terms:
                return False, f"Invalid terms in formula: {', '.join(invalid_terms)}. Use only {', '.join(selected_bands)}."
            if not all(char in allowed_chars or char in ''.join(selected_bands) for char in formula):
                return False, "Formula contains invalid characters. Use only bands, numbers, and operators (+, -, *, /, ())"
            return True, ""

        is_valid, error_message = validate_formula(custom_formula, selected_bands)
        if not is_valid:
            st.error(error_message)
            st.stop()
        elif not custom_formula:
            st.warning("Please enter a custom formula to proceed.")
            st.stop()

        # Display the validated formula
        st.write(f"Custom Formula: {custom_formula}")
        
# The rest of your code (reducer, geometry conversion, date input, aggregation, etc.) remains unchanged...

# Function to get the corresponding reducer based on user input
def get_reducer(reducer_name):
    reducers = {
        'mean': ee.Reducer.mean(),
        'sum': ee.Reducer.sum(),
        'median': ee.Reducer.median(),
        'min': ee.Reducer.min(),
        'max': ee.Reducer.max(),
        'count': ee.Reducer.count(),
    }
    return reducers.get(reducer_name.lower(), ee.Reducer.mean())

# Streamlit selectbox for reducer choice
reducer_choice = st.selectbox(
    "Select Reducer (e.g, mean , sum , median , min , max , count)",
    ['mean', 'sum', 'median', 'min', 'max', 'count'],
    index=0  # Default to 'mean'
)

# # Function to convert geometry to Earth Engine format
# def convert_to_ee_geometry(geometry):
#     if isinstance(geometry, base.BaseGeometry):
#         if geometry.is_valid:
#             geojson = geometry.__geo_interface__
#             return ee.Geometry(geojson)
#         else:
#             raise ValueError("Invalid geometry: The polygon geometry is not valid.")
#     elif isinstance(geometry, dict) or isinstance(geometry, str):
#         try:
#             if isinstance(geometry, str):
#                 geometry = json.loads(geometry)
#             if 'type' in geometry and 'coordinates' in geometry:
#                 return ee.Geometry(geometry)
#             else:
#                 raise ValueError("GeoJSON format is invalid.")
#         except Exception as e:
#             raise ValueError(f"Error parsing GeoJSON: {e}")
#     elif isinstance(geometry, str) and geometry.lower().endswith(".kml"):
#         try:
#             tree = ET.parse(geometry)
#             kml_root = tree.getroot()
#             kml_namespace = {'kml': 'http://www.opengis.net/kml/2.2'}
#             coordinates = kml_root.findall(".//kml:coordinates", kml_namespace)
#             if coordinates:
#                 coords_text = coordinates[0].text.strip()
#                 coords = coords_text.split()
#                 coords = [tuple(map(float, coord.split(','))) for coord in coords]
#                 geojson = {"type": "Polygon", "coordinates": [coords]}
#                 return ee.Geometry(geojson)
#             else:
#                 raise ValueError("KML does not contain valid coordinates.")
#         except Exception as e:
#             raise ValueError(f"Error parsing KML: {e}")
#     else:
#         raise ValueError("Unsupported geometry input type. Supported types are Shapely, GeoJSON, and KML.")

# Function to convert geometry to Earth Engine format
def convert_to_ee_geometry(geometry):
    st.write(f"Debug: convert_to_ee_geometry called with type - {type(geometry)}")  # Debug input type
    if isinstance(geometry, base.BaseGeometry):
        if geometry.is_valid:
            geojson = geometry.__geo_interface__
            st.write(f"Debug: Converting Shapely geometry to GeoJSON - {geojson}")  # Debug GeoJSON
            return ee.Geometry(geojson)
        else:
            raise ValueError("Invalid geometry: The polygon geometry is not valid.")
    elif isinstance(geometry, dict):
        if 'type' in geometry and 'coordinates' in geometry:
            return ee.Geometry(geometry)
        else:
            raise ValueError("GeoJSON format is invalid.")
    elif isinstance(geometry, str):
        try:
            # If it’s a JSON string, parse it
            parsed = json.loads(geometry)
            if 'type' in parsed and 'coordinates' in parsed:
                return ee.Geometry(parsed)
            else:
                raise ValueError("GeoJSON string format is invalid.")
        except json.JSONDecodeError:
            # If it’s a KML string (not a file path)
            try:
                root = XET.fromstring(geometry)
                ns = {'kml': 'http://www.opengis.net/kml/2.2'}
                coords_elem = root.find('.//kml:Polygon//kml:coordinates', ns)
                if coords_elem is not None:
                    coords_text = ' '.join(coords_elem.text.split())
                    st.write(f"Debug: KML string coordinates - {coords_text}")  # Debug KML parsing
                    coords = [tuple(map(float, coord.split(','))) for coord in coords_text.split()]
                    geojson = {"type": "Polygon", "coordinates": [coords]}
                    return ee.Geometry(geojson)
                else:
                    raise ValueError("KML string does not contain valid coordinates.")
            except Exception as e:
                raise ValueError(f"Error parsing KML string: {e}")
    else:
        raise ValueError(f"Unsupported geometry input type: {type(geometry)}. Supported types are Shapely, GeoJSON, and KML string.")
        
# Date Input for Start and End Dates
start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01'))
end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01'))

# Convert start_date and end_date to string format for Earth Engine
start_date_str = start_date.strftime('%Y-%m-%d')
end_date_str = end_date.strftime('%Y-%m-%d')

# Aggregation period selection
aggregation_period = st.selectbox(
    "Select Aggregation Period (e.g, Custom(Start Date to End Date) , Weekly , Monthly , Yearly)",
    ["Custom (Start Date to End Date)", "Weekly", "Monthly", "Yearly"],
    index=0
)

# Ask user whether they want to process 'Point' or 'Polygon' data
shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])

# Additional options based on shape type
kernel_size = None
include_boundary = None
if shape_type.lower() == "point":
    kernel_size = st.selectbox(
        "Select Calculation Area(e.g, Point , 3x3 Kernel , 5x5 Kernel)",
        ["Point", "3x3 Kernel", "5x5 Kernel"],
        index=0,
        help="Choose 'Point' for exact point calculation, or a kernel size for area averaging."
    )
elif shape_type.lower() == "polygon":
    include_boundary = st.checkbox(
        "Include Boundary Pixels",
        value=True,
        help="Check to include pixels on the polygon boundary; uncheck to exclude them."
    )

# # Ask user to upload a file based on shape type
# file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])

# if file_upload is not None:
#     # Read the user-uploaded file
#     if shape_type.lower() == "point":
#         if file_upload.name.endswith('.csv'):
#             locations_df = pd.read_csv(file_upload)
#         elif file_upload.name.endswith('.geojson'):
#             locations_df = gpd.read_file(file_upload)
#         elif file_upload.name.endswith('.kml'):
#             locations_df = gpd.read_file(file_upload)
#         else:
#             st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
#             locations_df = pd.DataFrame()

#         if 'geometry' in locations_df.columns:
#             if locations_df.geometry.geom_type.isin(['Polygon', 'MultiPolygon']).any():
#                 st.warning("The uploaded file contains polygon data. Please select 'Polygon' for processing.")
#                 st.stop()

#         with st.spinner('Processing Map...'):
#             if locations_df is not None and not locations_df.empty:
#                 if 'geometry' in locations_df.columns:
#                     locations_df['latitude'] = locations_df['geometry'].y
#                     locations_df['longitude'] = locations_df['geometry'].x

#                 if 'latitude' not in locations_df.columns or 'longitude' not in locations_df.columns:
#                     st.error("Uploaded file is missing required 'latitude' or 'longitude' columns.")
#                 else:
#                     st.write("Preview of the uploaded points data:")
#                     st.dataframe(locations_df.head())
#                     m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
#                     for _, row in locations_df.iterrows():
#                         latitude = row['latitude']
#                         longitude = row['longitude']
#                         if pd.isna(latitude) or pd.isna(longitude):
#                             continue
#                         m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
#                     st.write("Map of Uploaded Points:")
#                     m.to_streamlit()
#                     st.session_state.map_data = m

#     elif shape_type.lower() == "polygon":
#         if file_upload.name.endswith('.csv'):
#             locations_df = pd.read_csv(file_upload)
#         elif file_upload.name.endswith('.geojson'):
#             locations_df = gpd.read_file(file_upload)
#         elif file_upload.name.endswith('.kml'):
#             locations_df = gpd.read_file(file_upload)
#         else:
#             st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
#             locations_df = pd.DataFrame()

#         if 'geometry' in locations_df.columns:
#             if locations_df.geometry.geom_type.isin(['Point', 'MultiPoint']).any():
#                 st.warning("The uploaded file contains point data. Please select 'Point' for processing.")
#                 st.stop()

#         with st.spinner('Processing Map...'):
#             if locations_df is not None and not locations_df.empty:
#                 if 'geometry' not in locations_df.columns:
#                     st.error("Uploaded file is missing required 'geometry' column.")
#                 else:
#                     st.write("Preview of the uploaded polygons data:")
#                     st.dataframe(locations_df.head())
#                     centroid_lat = locations_df.geometry.centroid.y.mean()
#                     centroid_lon = locations_df.geometry.centroid.x.mean()
#                     m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10)
#                     for _, row in locations_df.iterrows():
#                         polygon = row['geometry']
#                         if polygon.is_valid:
#                             gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs)
#                             m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
#                     st.write("Map of Uploaded Polygons:")
#                     m.to_streamlit()
#                     st.session_state.map_data = m


# Ask user to upload a file based on shape type
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])

if file_upload is not None:
    # Read the user-uploaded file
    if shape_type.lower() == "point":
        if file_upload.name.endswith('.csv'):
            locations_df = pd.read_csv(file_upload)
        elif file_upload.name.endswith('.geojson'):
            locations_df = gpd.read_file(file_upload)
        elif file_upload.name.endswith('.kml'):
            # Parse KML file for point data
            kml_string = file_upload.read().decode('utf-8')
            try:
                # Use xml.etree.ElementTree with unique alias
                root = XET.fromstring(kml_string)
                ns = {'kml': 'http://www.opengis.net/kml/2.2'}
                points = []
                for placemark in root.findall('.//kml:Placemark', ns):
                    name = placemark.findtext('kml:name', default=f"Point_{len(points)}", namespaces=ns)
                    coords_elem = placemark.find('.//kml:Point/kml:coordinates', ns)
                    if coords_elem is not None:
                        coords_text = coords_elem.text.strip()
                        st.write(f"Debug: Point coordinates found - {coords_text}")  # Debug output
                        coords = [c.strip() for c in coords_text.split(',')]
                        if len(coords) >= 2:  # Ensure at least lon, lat
                            lon, lat = float(coords[0]), float(coords[1])
                            points.append({'name': name, 'geometry': f"POINT ({lon} {lat})"})
                if not points:
                    st.error("No valid Point data found in the KML file.")
                    locations_df = pd.DataFrame()
                else:
                    locations_df = gpd.GeoDataFrame(points, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in points]), crs="EPSG:4326")
            except Exception as e:
                st.error(f"Error parsing KML file: {str(e)}")
                locations_df = pd.DataFrame()
        else:
            st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
            locations_df = pd.DataFrame()

        if 'geometry' in locations_df.columns:
            if locations_df.geometry.geom_type.isin(['Polygon', 'MultiPolygon']).any():
                st.warning("The uploaded file contains polygon data. Please select 'Polygon' for processing.")
                st.stop()

        with st.spinner('Processing Map...'):
            if locations_df is not None and not locations_df.empty:
                if 'geometry' in locations_df.columns:
                    locations_df['latitude'] = locations_df['geometry'].y
                    locations_df['longitude'] = locations_df['geometry'].x

                if 'latitude' not in locations_df.columns or 'longitude' not in locations_df.columns:
                    st.error("Uploaded file is missing required 'latitude' or 'longitude' columns.")
                else:
                    st.write("Preview of the uploaded points data:")
                    st.dataframe(locations_df.head())
                    m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
                    for _, row in locations_df.iterrows():
                        latitude = row['latitude']
                        longitude = row['longitude']
                        if pd.isna(latitude) or pd.isna(longitude):
                            continue
                        m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
                    st.write("Map of Uploaded Points:")
                    m.to_streamlit()
                    st.session_state.map_data = m

    elif shape_type.lower() == "polygon":
        if file_upload.name.endswith('.csv'):
            locations_df = pd.read_csv(file_upload)
        elif file_upload.name.endswith('.geojson'):
            locations_df = gpd.read_file(file_upload)
        elif file_upload.name.endswith('.kml'):
            # Parse KML file for polygon data
            kml_string = file_upload.read().decode('utf-8')
            try:
                root = XET.fromstring(kml_string)
                ns = {'kml': 'http://www.opengis.net/kml/2.2'}
                polygons = []
                for placemark in root.findall('.//kml:Placemark', ns):
                    name = placemark.findtext('kml:name', default=f"Polygon_{len(polygons)}", namespaces=ns)
                    coords_elem = placemark.find('.//kml:Polygon//kml:coordinates', ns)
                    if coords_elem is not None:
                        coords_text = ' '.join(coords_elem.text.split())  # Normalize whitespace
                        st.write(f"Debug: Polygon coordinates found - {coords_text}")  # Debug output
                        coord_pairs = [pair.split(',')[:2] for pair in coords_text.split() if pair]
                        if len(coord_pairs) >= 4:  # Minimum 4 points for a closed polygon
                            coords_str = " ".join([f"{float(lon)} {float(lat)}" for lon, lat in coord_pairs])
                            polygons.append({'name': name, 'geometry': f"POLYGON (({coords_str}))"})
                if not polygons:
                    st.error("No valid Polygon data found in the KML file.")
                    locations_df = pd.DataFrame()
                else:
                    locations_df = gpd.GeoDataFrame(polygons, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in polygons]), crs="EPSG:4326")
            except Exception as e:
                st.error(f"Error parsing KML file: {str(e)}")
                locations_df = pd.DataFrame()
        else:
            st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
            locations_df = pd.DataFrame()

        if 'geometry' in locations_df.columns:
            if locations_df.geometry.geom_type.isin(['Point', 'MultiPoint']).any():
                st.warning("The uploaded file contains point data. Please select 'Point' for processing.")
                st.stop()

        with st.spinner('Processing Map...'):
            if locations_df is not None and not locations_df.empty:
                if 'geometry' not in locations_df.columns:
                    st.error("Uploaded file is missing required 'geometry' column.")
                else:
                    st.write("Preview of the uploaded polygons data:")
                    st.dataframe(locations_df.head())
                    centroid_lat = locations_df.geometry.centroid.y.mean()
                    centroid_lon = locations_df.geometry.centroid.x.mean()
                    m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10)
                    for _, row in locations_df.iterrows():
                        polygon = row['geometry']
                        if polygon.is_valid:
                            gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs)
                            m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
                    st.write("Map of Uploaded Polygons:")
                    m.to_streamlit()
                    st.session_state.map_data = m

# ... (Rest of the code until convert_to_ee_geometry) ...
# Initialize session state for storing results
if 'results' not in st.session_state:
    st.session_state.results = []
if 'last_params' not in st.session_state:
    st.session_state.last_params = {}
if 'map_data' not in st.session_state:
    st.session_state.map_data = None
if 'show_example' not in st.session_state:
    st.session_state.show_example = True

# Function to check if parameters have changed
def parameters_changed():
    return (
        st.session_state.last_params.get('main_selection') != main_selection or
        st.session_state.last_params.get('dataset_id') != dataset_id or
        st.session_state.last_params.get('selected_bands') != selected_bands or
        st.session_state.last_params.get('custom_formula') != custom_formula or
        st.session_state.last_params.get('start_date_str') != start_date_str or
        st.session_state.last_params.get('end_date_str') != end_date_str or
        st.session_state.last_params.get('shape_type') != shape_type or
        st.session_state.last_params.get('file_upload') != file_upload or
        st.session_state.last_params.get('kernel_size') != kernel_size or
        st.session_state.last_params.get('include_boundary') != include_boundary
    )

# If parameters have changed, reset the results
if parameters_changed():
    st.session_state.results = []
    st.session_state.last_params = {
        'main_selection': main_selection,
        'dataset_id': dataset_id,
        'selected_bands': selected_bands,
        'custom_formula': custom_formula,
        'start_date_str': start_date_str,
        'end_date_str': end_date_str,
        'shape_type': shape_type,
        'file_upload': file_upload,
        'kernel_size': kernel_size,
        'include_boundary': include_boundary
    }

# Function to calculate custom formula
def calculate_custom_formula(image, geometry, selected_bands, custom_formula, reducer_choice, scale=30):
    try:
        band_values = {}
        band_names = image.bandNames().getInfo()
        
        for band in selected_bands:
            if band not in band_names:
                raise ValueError(f"Band '{band}' not found in the dataset.")
            band_values[band] = image.select(band)

        reducer = get_reducer(reducer_choice)
        reduced_values = {}
        for band in selected_bands:
            value = band_values[band].reduceRegion(
                reducer=reducer,
                geometry=geometry,
                scale=scale
            ).get(band).getInfo()
            reduced_values[band] = float(value if value is not None else 0)

        formula = custom_formula
        for band in selected_bands:
            formula = formula.replace(band, str(reduced_values[band]))

        result = eval(formula, {"__builtins__": {}}, reduced_values)
        if not isinstance(result, (int, float)):
            raise ValueError("Formula did not result in a numeric value.")
        
        return ee.Image.constant(result).rename('custom_result')
    
    except ZeroDivisionError:
        st.error("Error: Division by zero in the formula.")
        return ee.Image(0).rename('custom_result').set('error', 'Division by zero')
    except SyntaxError:
        st.error(f"Error: Invalid syntax in formula '{custom_formula}'.")
        return ee.Image(0).rename('custom_result').set('error', 'Invalid syntax')
    except ValueError as e:
        st.error(f"Error: {str(e)}")
        return ee.Image(0).rename('custom_result').set('error', str(e))
    except Exception as e:
        st.error(f"Unexpected error: {e}")
        return ee.Image(0).rename('custom_result').set('error', str(e))

# Function to calculate index for a period
def calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice):
    return calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice)

# Aggregation functions
def aggregate_data_custom(collection):
    collection = collection.map(lambda image: image.set('day', ee.Date(image.get('system:time_start')).format('YYYY-MM-dd')))
    grouped_by_day = collection.aggregate_array('day').distinct()
    def calculate_daily_mean(day):
        daily_collection = collection.filter(ee.Filter.eq('day', day))
        daily_mean = daily_collection.mean()
        return daily_mean.set('day', day)
    daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
    return ee.ImageCollection(daily_images)

def aggregate_data_weekly(collection):
    def set_week_start(image):
        date = ee.Date(image.get('system:time_start'))
        days_since_week_start = date.getRelative('day', 'week')
        offset = ee.Number(days_since_week_start).multiply(-1)
        week_start = date.advance(offset, 'day')
        return image.set('week_start', week_start.format('YYYY-MM-dd'))
    collection = collection.map(set_week_start)
    grouped_by_week = collection.aggregate_array('week_start').distinct()
    def calculate_weekly_mean(week_start):
        weekly_collection = collection.filter(ee.Filter.eq('week_start', week_start))
        weekly_mean = weekly_collection.mean()
        return weekly_mean.set('week_start', week_start)
    weekly_images = ee.List(grouped_by_week.map(calculate_weekly_mean))
    return ee.ImageCollection(weekly_images)

def aggregate_data_monthly(collection, start_date, end_date):
    collection = collection.filterDate(start_date, end_date)
    collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM')))
    grouped_by_month = collection.aggregate_array('month').distinct()
    def calculate_monthly_mean(month):
        monthly_collection = collection.filter(ee.Filter.eq('month', month))
        monthly_mean = monthly_collection.mean()
        return monthly_mean.set('month', month)
    monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean))
    return ee.ImageCollection(monthly_images)

def aggregate_data_yearly(collection):
    collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY')))
    grouped_by_year = collection.aggregate_array('year').distinct()
    def calculate_yearly_mean(year):
        yearly_collection = collection.filter(ee.Filter.eq('year', year))
        yearly_mean = yearly_collection.mean()
        return yearly_mean.set('year', year)
    yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean))
    return ee.ImageCollection(yearly_images)

# Process aggregation function
def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula="", kernel_size=None, include_boundary=None):
    aggregated_results = []
    
    if not custom_formula:
        st.error("Custom formula cannot be empty. Please provide a formula.")
        return aggregated_results
    
    total_steps = len(locations_df)
    progress_bar = st.progress(0)
    progress_text = st.empty()
    
    with st.spinner('Processing data...'):
        if shape_type.lower() == "point":
            for idx, row in locations_df.iterrows():
                latitude = row.get('latitude')
                longitude = row.get('longitude')
                if pd.isna(latitude) or pd.isna(longitude):
                    st.warning(f"Skipping location {idx} with missing latitude or longitude")
                    continue
                
                location_name = row.get('name', f"Location_{idx}")
                
                if kernel_size == "3x3 Kernel":
                    buffer_size = 45  # 90m x 90m
                    roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
                elif kernel_size == "5x5 Kernel":
                    buffer_size = 75  # 150m x 150m
                    roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
                else:  # Point
                    roi = ee.Geometry.Point([longitude, latitude])
                
                collection = ee.ImageCollection(dataset_id) \
                    .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
                    .filterBounds(roi)
                
                if aggregation_period.lower() == 'custom (start date to end date)':
                    collection = aggregate_data_custom(collection)
                elif aggregation_period.lower() == 'weekly':
                    collection = aggregate_data_weekly(collection)
                elif aggregation_period.lower() == 'monthly':
                    collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
                elif aggregation_period.lower() == 'yearly':
                    collection = aggregate_data_yearly(collection)
                
                image_list = collection.toList(collection.size())
                processed_weeks = set()
                for i in range(image_list.size().getInfo()):
                    image = ee.Image(image_list.get(i))
                    
                    if aggregation_period.lower() == 'custom (start date to end date)':
                        timestamp = image.get('day')
                        period_label = 'Date'
                        date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
                    elif aggregation_period.lower() == 'weekly':
                        timestamp = image.get('week_start')
                        period_label = 'Week'
                        date = ee.String(timestamp).getInfo()
                        if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or 
                            pd.to_datetime(date) > pd.to_datetime(end_date_str) or 
                            date in processed_weeks):
                            continue
                        processed_weeks.add(date)
                    elif aggregation_period.lower() == 'monthly':
                        timestamp = image.get('month')
                        period_label = 'Month'
                        date = ee.Date(timestamp).format('YYYY-MM').getInfo()
                    elif aggregation_period.lower() == 'yearly':
                        timestamp = image.get('year')
                        period_label = 'Year'
                        date = ee.Date(timestamp).format('YYYY').getInfo()
                    
                    index_image = calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice)
                    
                    try:
                        index_value = index_image.reduceRegion(
                            reducer=get_reducer(reducer_choice),
                            geometry=roi,
                            scale=30
                        ).get('custom_result')
                        
                        calculated_value = index_value.getInfo()
                        
                        if isinstance(calculated_value, (int, float)):
                            aggregated_results.append({
                                'Location Name': location_name,
                                'Latitude': latitude,
                                'Longitude': longitude,
                                period_label: date,
                                'Start Date': start_date_str,
                                'End Date': end_date_str,
                                'Calculated Value': calculated_value
                            })
                        else:
                            st.warning(f"Skipping invalid value for {location_name} on {date}")
                    except Exception as e:
                        st.error(f"Error retrieving value for {location_name}: {e}")
                
                progress_percentage = (idx + 1) / total_steps
                progress_bar.progress(progress_percentage)
                progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
        
        elif shape_type.lower() == "polygon":
            for idx, row in locations_df.iterrows():
                polygon_name = row.get('name', f"Polygon_{idx}")
                polygon_geometry = row.get('geometry')
                location_name = polygon_name
                
                try:
                    roi = convert_to_ee_geometry(polygon_geometry)
                    if not include_boundary:
                        roi = roi.buffer(-30).bounds()
                except ValueError as e:
                    st.warning(f"Skipping invalid polygon {polygon_name}: {e}")
                    continue
                
                collection = ee.ImageCollection(dataset_id) \
                    .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
                    .filterBounds(roi)
                
                if aggregation_period.lower() == 'custom (start date to end date)':
                    collection = aggregate_data_custom(collection)
                elif aggregation_period.lower() == 'weekly':
                    collection = aggregate_data_weekly(collection)
                elif aggregation_period.lower() == 'monthly':
                    collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
                elif aggregation_period.lower() == 'yearly':
                    collection = aggregate_data_yearly(collection)
                
                image_list = collection.toList(collection.size())
                processed_weeks = set()
                for i in range(image_list.size().getInfo()):
                    image = ee.Image(image_list.get(i))
                    
                    if aggregation_period.lower() == 'custom (start date to end date)':
                        timestamp = image.get('day')
                        period_label = 'Date'
                        date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
                    elif aggregation_period.lower() == 'weekly':
                        timestamp = image.get('week_start')
                        period_label = 'Week'
                        date = ee.String(timestamp).getInfo()
                        if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or 
                            pd.to_datetime(date) > pd.to_datetime(end_date_str) or 
                            date in processed_weeks):
                            continue
                        processed_weeks.add(date)
                    elif aggregation_period.lower() == 'monthly':
                        timestamp = image.get('month')
                        period_label = 'Month'
                        date = ee.Date(timestamp).format('YYYY-MM').getInfo()
                    elif aggregation_period.lower() == 'yearly':
                        timestamp = image.get('year')
                        period_label = 'Year'
                        date = ee.Date(timestamp).format('YYYY').getInfo()
                    
                    index_image = calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice)
                    
                    try:
                        index_value = index_image.reduceRegion(
                            reducer=get_reducer(reducer_choice),
                            geometry=roi,
                            scale=30
                        ).get('custom_result')
                        
                        calculated_value = index_value.getInfo()
                        
                        if isinstance(calculated_value, (int, float)):
                            aggregated_results.append({
                                'Location Name': location_name,
                                period_label: date,
                                'Start Date': start_date_str,
                                'End Date': end_date_str,
                                'Calculated Value': calculated_value
                            })
                        else:
                            st.warning(f"Skipping invalid value for {location_name} on {date}")
                    except Exception as e:
                        st.error(f"Error retrieving value for {location_name}: {e}")
                
                progress_percentage = (idx + 1) / total_steps
                progress_bar.progress(progress_percentage)
                progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
    
    if aggregated_results:
        result_df = pd.DataFrame(aggregated_results)
        if aggregation_period.lower() == 'custom (start date to end date)':
            agg_dict = {
                'Start Date': 'first',
                'End Date': 'first',
                'Calculated Value': 'mean'
            }
            if shape_type.lower() == 'point':
                agg_dict['Latitude'] = 'first'
                agg_dict['Longitude'] = 'first'
            aggregated_output = result_df.groupby('Location Name').agg(agg_dict).reset_index()
            aggregated_output.rename(columns={'Calculated Value': 'Aggregated Value'}, inplace=True)
            return aggregated_output.to_dict(orient='records')
        else:
            return result_df.to_dict(orient='records')
    return []

# Button to trigger calculation
if st.button(f"Calculate {custom_formula}"):
    if file_upload is not None:
        if shape_type.lower() in ["point", "polygon"]:
            results = process_aggregation(
                locations_df,
                start_date_str,
                end_date_str,
                dataset_id,
                selected_bands,
                reducer_choice,
                shape_type,
                aggregation_period,
                custom_formula,
                kernel_size=kernel_size,
                include_boundary=include_boundary
            )
            if results:
                result_df = pd.DataFrame(results)
                st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}")
                st.dataframe(result_df)
                filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv"
                st.download_button(
                    label="Download results as CSV",
                    data=result_df.to_csv(index=False).encode('utf-8'),
                    file_name=filename,
                    mime='text/csv'
                )
                # Show an example calculation
                if st.session_state.show_example and results:
                    example_result = results[0]
                    example_image = ee.ImageCollection(dataset_id).filterDate(start_date_str, end_date_str).first()
                    example_roi = (
                        ee.Geometry.Point([example_result['Longitude'], example_result['Latitude']]) 
                        if shape_type.lower() == 'point' 
                        else convert_to_ee_geometry(locations_df['geometry'].iloc[0])
                    )
                    example_values = {}
                    for band in selected_bands:
                        value = example_image.select(band).reduceRegion(
                            reducer=get_reducer(reducer_choice),
                            geometry=example_roi,
                            scale=30
                        ).get(band).getInfo()
                        example_values[band] = float(value if value is not None else 0)
                    example_formula = custom_formula
                    for band in selected_bands:
                        example_formula = example_formula.replace(band, str(example_values[band]))
                    # st.write(f"Example Calculation: {custom_formula} -> {example_formula} = {example_result.get('Calculated Value', example_result.get('Aggregated Value'))}")
                    st.session_state.show_example = False
                st.success('Processing complete!')
            else:
                st.warning("No results were generated. Check your inputs or formula.")
        else:
            st.warning("Please upload a file to process.")
    else:
        st.warning("Please upload a file to proceed.")