Spaces:
Sleeping
Sleeping
File size: 47,807 Bytes
5716f29 8bb4ece 0db3082 5716f29 a5d11e6 136ef64 a0fc76f 7453fdd a0fc76f 7453fdd 51d0b60 d2bd325 7453fdd a0fc76f cbc0050 7453fdd cbc0050 a96e60b 5716f29 cf7d33a 5716f29 c04779d 5716f29 5e5dbac a53c104 8005192 d8c2f55 78c832c d8c2f55 78c832c ae5e91a 78c832c d8c2f55 78c832c d8c2f55 0db3082 5716f29 9266c27 7dd6902 9266c27 5716f29 d8c2f55 db652ad d8c2f55 db652ad 78c832c db652ad 78c832c db652ad 321d2f5 acc3dd8 321d2f5 9266c27 7dd6902 321d2f5 5716f29 cc5bade 5716f29 8e4e9db 5716f29 d8c2f55 5716f29 7a7dd74 78c832c 5716f29 45365f8 5716f29 78c832c d8c2f55 78c832c d8c2f55 5716f29 5cafd71 5716f29 d8c2f55 5716f29 f86a704 ca4f3ac 78c832c d8c2f55 5716f29 45365f8 78c832c 5716f29 78c832c ae5e91a 5716f29 3ed34b1 5716f29 caf1e7f 5716f29 3ed34b1 8bb4ece 5716f29 6a0c780 5716f29 6a0c780 5716f29 6a0c780 5716f29 6a0c780 8bb4ece 6a0c780 8bb4ece 6a0c780 5716f29 6a0c780 5716f29 3bde9b5 5716f29 8e4e9db d8c2f55 d155b1c 5716f29 d155b1c 5716f29 db3e449 5716f29 d8c2f55 c16dfb4 69c4a67 5716f29 d155b1c 5716f29 c16dfb4 8bb4ece c16dfb4 a73f17c 8bb4ece a73f17c c16dfb4 5716f29 d155b1c 5716f29 d155b1c 5716f29 d155b1c 5716f29 7a7dd74 5716f29 c16dfb4 8bb4ece c16dfb4 a73f17c 8bb4ece 69c4a67 a73f17c c16dfb4 5716f29 116725d 5716f29 116725d 5716f29 116725d 8bb4ece 5716f29 d8c2f55 8e4e9db 5716f29 8e4e9db 5716f29 8e4e9db ca4f3ac 5716f29 d8c2f55 5716f29 acc3dd8 d8c2f55 5716f29 d8c2f55 5716f29 d8c2f55 5716f29 d8c2f55 5716f29 8e4e9db 5716f29 d8c2f55 5716f29 d8c2f55 5716f29 d8c2f55 5716f29 78c832c 5716f29 8e4e9db d8c2f55 5716f29 ef6db6b 5716f29 8e4e9db 5716f29 8e4e9db 5716f29 7a7dd74 d8c2f55 5716f29 96396bc 5716f29 55bded4 5716f29 96396bc 5716f29 96396bc 5716f29 8e4e9db 5716f29 d8c2f55 5716f29 d8c2f55 5716f29 96396bc 5716f29 78c832c 5716f29 1ceff46 5716f29 1ceff46 5716f29 1ceff46 5716f29 902764c 5716f29 96396bc 5716f29 96396bc 5716f29 96396bc 5716f29 96396bc 5716f29 96396bc 5716f29 1ceff46 5716f29 1ceff46 5716f29 1ceff46 5716f29 1ceff46 5716f29 1ceff46 5716f29 96396bc 5716f29 96396bc 5716f29 96396bc 5716f29 8e4e9db 5716f29 d8c2f55 5716f29 d8c2f55 5716f29 d8c2f55 5716f29 d8c2f55 5716f29 d8c2f55 5716f29 d8c2f55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 |
import streamlit as st
import json
import ee
import os
import pandas as pd
import geopandas as gpd
from datetime import datetime
import leafmap.foliumap as leafmap
import re
from shapely.geometry import base
# from lxml import etree
# from xml.etree import ElementTree as ET
from xml.etree import ElementTree as XET
# Set up the page layout
st.set_page_config(layout="wide")
# Custom button styling
m = st.markdown(
"""
<style>
div.stButton > button:first-child {
background-color: #006400;
color:#ffffff;
}
</style>""",
unsafe_allow_html=True,
)
# Logo
st.write(
f"""
<div style="display: flex; justify-content: space-between; align-items: center;">
<img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/ISRO_Logo.png" style="width: 20%; margin-right: auto;">
<img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/SAC_Logo.png" style="width: 20%; margin-left: auto;">
</div>
""",
unsafe_allow_html=True,
)
# Title
st.markdown(
f"""
<div style="display: flex; flex-direction: column; align-items: center;">
<img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/BHOOMI_1.png" style="width: 20%;">
<h3 style="text-align: center; margin: 0;">(Bandwise Harmonization & Optimized Output for multispectral integration)</h3>
</div>
<hr>
""",
unsafe_allow_html=True,
)
# st.markdown(
# f"""
# <div style="text-align: center; background-image: url('https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/B1.jpg'); background-size: cover; padding: 20px;">
# <h1 style="display: inline-block; margin: 0;">
# <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/B1.png" style="width: 20%; vertical-align: middle; margin-right: 10px;">
# BHOOMI
# </h1>
# <h3 style="margin: 0;">(Bandwise Harmonization & Optimized Output for multispectral integration)</h3>
# </div>
# <hr>
# """,
# unsafe_allow_html=True,
# )
# st.write("<h4><div style='text-align: center;'>User Inputs</div></h4>", unsafe_allow_html=True)
# st.markdown(
# f"""
# <div style="position: relative; text-align: center; padding: 20px;">
# <div style="background-image: url('https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/B1.jpg'); background-size: cover; position: absolute; top: 0; left: 0; right: 0; bottom: 0; z-index: 1;"></div>
# <div style="background-color: rgba(255, 255, 255, 0.2); position: absolute; top: 0; left: 0; right: 0; bottom: 0; z-index: 2;"></div>
# <div style="position: relative; z-index: 3;">
# <div style="display: flex; justify-content: space-between; align-items: center;">
# <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/ISRO_Logo.png" style="width: 20%; margin-right: auto;">
# <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/SAC_Logo.png" style="width: 20%; margin-left: auto;">
# </div>
# <h1 style="display: inline-block; margin: 0;">
# BHOOMI
# </h1>
# <h3 style="margin: 0;">(Bandwise Harmonization & Optimized Output for multispectral integration)</h3>
# </div>
# </div>
# <hr>
# """,
# unsafe_allow_html=True,
# )
st.markdown(
f"""
<h4 style="text-align: center;">User Inputs</h4>
""",
unsafe_allow_html=True,
)
# Authenticate and initialize Earth Engine
earthengine_credentials = os.environ.get("EE_Authentication")
# Initialize Earth Engine with secret credentials
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
f.write(earthengine_credentials)
ee.Initialize(project='ee-yashsacisro24')
st.write("<h5>Image Collection</h5>", unsafe_allow_html=True)
# Imagery base selection
imagery_base = st.selectbox("Select Imagery Base", ["Sentinel", "Landsat", "MODIS", "Custom Input"], index=0)
# Load the appropriate dataset based on imagery base
if imagery_base == "Sentinel":
dataset_file = "sentinel_datasets.json"
with open(dataset_file) as f:
data = json.load(f)
elif imagery_base == "Landsat":
dataset_file = "landsat_datasets.json"
with open(dataset_file) as f:
data = json.load(f)
elif imagery_base == "MODIS":
dataset_file = "modis_datasets.json"
with open(dataset_file) as f:
data = json.load(f)
elif imagery_base == "Custom Input":
custom_dataset_id = st.text_input("Enter Custom Earth Engine Dataset ID (e.g., ee.ImageCollection('AHN/AHN4'))", value="")
if custom_dataset_id:
try:
# Remove potential "ee.ImageCollection()" wrapper for simplicity
if custom_dataset_id.startswith("ee.ImageCollection("):
custom_dataset_id = custom_dataset_id.replace("ee.ImageCollection('", "").replace("')", "")
# Fetch dataset info from GEE
collection = ee.ImageCollection(custom_dataset_id)
band_names = collection.first().bandNames().getInfo()
data = {
f"Custom Dataset: {custom_dataset_id}": {
"sub_options": {custom_dataset_id: f"Custom Dataset ({custom_dataset_id})"},
"bands": {custom_dataset_id: band_names}
}
}
st.write(f"Fetched bands for {custom_dataset_id}: {', '.join(band_names)}")
except Exception as e:
st.error(f"Error fetching dataset: {str(e)}. Please check the dataset ID and ensure it's valid in Google Earth Engine.")
data = {}
else:
st.warning("Please enter a custom dataset ID to proceed.")
data = {}
# Display the title for the Streamlit app
# st.title(f"{imagery_base} Dataset")
st.markdown(
f"""
<hr>
<h5><b>{imagery_base} Dataset</b></h5>
""",
unsafe_allow_html=True,
)
# Select dataset category (main selection)
if data:
main_selection = st.selectbox(f"Select {imagery_base} Dataset Category", list(data.keys()))
else:
main_selection = None
# Initialize sub_selection and dataset_id as None
sub_selection = None
dataset_id = None
# If a category is selected, display the sub-options (specific datasets)
if main_selection:
sub_options = data[main_selection]["sub_options"]
sub_selection = st.selectbox(f"Select Specific {imagery_base} Dataset ID", list(sub_options.keys()))
# Display the selected dataset ID based on user input
if sub_selection:
st.write(f"You selected: {main_selection} -> {sub_options[sub_selection]}")
st.write(f"Dataset ID: {sub_selection}")
dataset_id = sub_selection # Use the key directly as the dataset ID
# Earth Engine Index Calculator Section
# st.header("Earth Engine Index Calculator")
st.markdown(
f"""
<hr>
<h5><b>Earth Engine Index Calculator</b></h5>
""",
unsafe_allow_html=True,
)
# Load band information based on selected dataset
if main_selection and sub_selection:
dataset_bands = data[main_selection]["bands"].get(sub_selection, [])
st.write(f"Available Bands for {sub_options[sub_selection]}: {', '.join(dataset_bands)}")
# Allow user to select 1 or 2 bands
selected_bands = st.multiselect(
"Select 1 or 2 Bands for Calculation",
options=dataset_bands,
default=[dataset_bands[0]] if dataset_bands else [],
help=f"Select 1 or 2 bands from: {', '.join(dataset_bands)}"
)
# Ensure minimum 1 and maximum 2 bands are selected
if len(selected_bands) < 1:
st.warning("Please select at least one band.")
st.stop()
# Show custom formula input if bands are selected
if selected_bands:
# Provide a default formula based on the number of selected bands
if len(selected_bands) == 1:
default_formula = f"{selected_bands[0]}"
example = f"'{selected_bands[0]} * 2' or '{selected_bands[0]} + 1'"
else: # len(selected_bands) == 2
default_formula = f"({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})"
example = f"'{selected_bands[0]} * {selected_bands[1]} / 2' or '({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})'"
custom_formula = st.text_input(
"Enter Custom Formula (e.g (B8 - B4) / (B8 + B4) , B4*B3/2)",
value=default_formula,
help=f"Use only these bands: {', '.join(selected_bands)}. Examples: {example}"
)
# Validate the formula
def validate_formula(formula, selected_bands):
allowed_chars = set(" +-*/()0123456789.")
terms = re.findall(r'[a-zA-Z][a-zA-Z0-9_]*', formula)
invalid_terms = [term for term in terms if term not in selected_bands]
if invalid_terms:
return False, f"Invalid terms in formula: {', '.join(invalid_terms)}. Use only {', '.join(selected_bands)}."
if not all(char in allowed_chars or char in ''.join(selected_bands) for char in formula):
return False, "Formula contains invalid characters. Use only bands, numbers, and operators (+, -, *, /, ())"
return True, ""
is_valid, error_message = validate_formula(custom_formula, selected_bands)
if not is_valid:
st.error(error_message)
st.stop()
elif not custom_formula:
st.warning("Please enter a custom formula to proceed.")
st.stop()
# Display the validated formula
st.write(f"Custom Formula: {custom_formula}")
# The rest of your code (reducer, geometry conversion, date input, aggregation, etc.) remains unchanged...
# Function to get the corresponding reducer based on user input
def get_reducer(reducer_name):
reducers = {
'mean': ee.Reducer.mean(),
'sum': ee.Reducer.sum(),
'median': ee.Reducer.median(),
'min': ee.Reducer.min(),
'max': ee.Reducer.max(),
'count': ee.Reducer.count(),
}
return reducers.get(reducer_name.lower(), ee.Reducer.mean())
# Streamlit selectbox for reducer choice
reducer_choice = st.selectbox(
"Select Reducer (e.g, mean , sum , median , min , max , count)",
['mean', 'sum', 'median', 'min', 'max', 'count'],
index=0 # Default to 'mean'
)
# # Function to convert geometry to Earth Engine format
# def convert_to_ee_geometry(geometry):
# if isinstance(geometry, base.BaseGeometry):
# if geometry.is_valid:
# geojson = geometry.__geo_interface__
# return ee.Geometry(geojson)
# else:
# raise ValueError("Invalid geometry: The polygon geometry is not valid.")
# elif isinstance(geometry, dict) or isinstance(geometry, str):
# try:
# if isinstance(geometry, str):
# geometry = json.loads(geometry)
# if 'type' in geometry and 'coordinates' in geometry:
# return ee.Geometry(geometry)
# else:
# raise ValueError("GeoJSON format is invalid.")
# except Exception as e:
# raise ValueError(f"Error parsing GeoJSON: {e}")
# elif isinstance(geometry, str) and geometry.lower().endswith(".kml"):
# try:
# tree = ET.parse(geometry)
# kml_root = tree.getroot()
# kml_namespace = {'kml': 'http://www.opengis.net/kml/2.2'}
# coordinates = kml_root.findall(".//kml:coordinates", kml_namespace)
# if coordinates:
# coords_text = coordinates[0].text.strip()
# coords = coords_text.split()
# coords = [tuple(map(float, coord.split(','))) for coord in coords]
# geojson = {"type": "Polygon", "coordinates": [coords]}
# return ee.Geometry(geojson)
# else:
# raise ValueError("KML does not contain valid coordinates.")
# except Exception as e:
# raise ValueError(f"Error parsing KML: {e}")
# else:
# raise ValueError("Unsupported geometry input type. Supported types are Shapely, GeoJSON, and KML.")
# Function to convert geometry to Earth Engine format
def convert_to_ee_geometry(geometry):
st.write(f"Debug: convert_to_ee_geometry called with type - {type(geometry)}") # Debug input type
if isinstance(geometry, base.BaseGeometry):
if geometry.is_valid:
geojson = geometry.__geo_interface__
st.write(f"Debug: Converting Shapely geometry to GeoJSON - {geojson}") # Debug GeoJSON
return ee.Geometry(geojson)
else:
raise ValueError("Invalid geometry: The polygon geometry is not valid.")
elif isinstance(geometry, dict):
if 'type' in geometry and 'coordinates' in geometry:
return ee.Geometry(geometry)
else:
raise ValueError("GeoJSON format is invalid.")
elif isinstance(geometry, str):
try:
# If it’s a JSON string, parse it
parsed = json.loads(geometry)
if 'type' in parsed and 'coordinates' in parsed:
return ee.Geometry(parsed)
else:
raise ValueError("GeoJSON string format is invalid.")
except json.JSONDecodeError:
# If it’s a KML string (not a file path)
try:
root = XET.fromstring(geometry)
ns = {'kml': 'http://www.opengis.net/kml/2.2'}
coords_elem = root.find('.//kml:Polygon//kml:coordinates', ns)
if coords_elem is not None:
coords_text = ' '.join(coords_elem.text.split())
st.write(f"Debug: KML string coordinates - {coords_text}") # Debug KML parsing
coords = [tuple(map(float, coord.split(','))) for coord in coords_text.split()]
geojson = {"type": "Polygon", "coordinates": [coords]}
return ee.Geometry(geojson)
else:
raise ValueError("KML string does not contain valid coordinates.")
except Exception as e:
raise ValueError(f"Error parsing KML string: {e}")
else:
raise ValueError(f"Unsupported geometry input type: {type(geometry)}. Supported types are Shapely, GeoJSON, and KML string.")
# Date Input for Start and End Dates
start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01'))
end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01'))
# Convert start_date and end_date to string format for Earth Engine
start_date_str = start_date.strftime('%Y-%m-%d')
end_date_str = end_date.strftime('%Y-%m-%d')
# Aggregation period selection
aggregation_period = st.selectbox(
"Select Aggregation Period (e.g, Custom(Start Date to End Date) , Weekly , Monthly , Yearly)",
["Custom (Start Date to End Date)", "Weekly", "Monthly", "Yearly"],
index=0
)
# Ask user whether they want to process 'Point' or 'Polygon' data
shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
# Additional options based on shape type
kernel_size = None
include_boundary = None
if shape_type.lower() == "point":
kernel_size = st.selectbox(
"Select Calculation Area(e.g, Point , 3x3 Kernel , 5x5 Kernel)",
["Point", "3x3 Kernel", "5x5 Kernel"],
index=0,
help="Choose 'Point' for exact point calculation, or a kernel size for area averaging."
)
elif shape_type.lower() == "polygon":
include_boundary = st.checkbox(
"Include Boundary Pixels",
value=True,
help="Check to include pixels on the polygon boundary; uncheck to exclude them."
)
# # Ask user to upload a file based on shape type
# file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
# if file_upload is not None:
# # Read the user-uploaded file
# if shape_type.lower() == "point":
# if file_upload.name.endswith('.csv'):
# locations_df = pd.read_csv(file_upload)
# elif file_upload.name.endswith('.geojson'):
# locations_df = gpd.read_file(file_upload)
# elif file_upload.name.endswith('.kml'):
# locations_df = gpd.read_file(file_upload)
# else:
# st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
# locations_df = pd.DataFrame()
# if 'geometry' in locations_df.columns:
# if locations_df.geometry.geom_type.isin(['Polygon', 'MultiPolygon']).any():
# st.warning("The uploaded file contains polygon data. Please select 'Polygon' for processing.")
# st.stop()
# with st.spinner('Processing Map...'):
# if locations_df is not None and not locations_df.empty:
# if 'geometry' in locations_df.columns:
# locations_df['latitude'] = locations_df['geometry'].y
# locations_df['longitude'] = locations_df['geometry'].x
# if 'latitude' not in locations_df.columns or 'longitude' not in locations_df.columns:
# st.error("Uploaded file is missing required 'latitude' or 'longitude' columns.")
# else:
# st.write("Preview of the uploaded points data:")
# st.dataframe(locations_df.head())
# m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
# for _, row in locations_df.iterrows():
# latitude = row['latitude']
# longitude = row['longitude']
# if pd.isna(latitude) or pd.isna(longitude):
# continue
# m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
# st.write("Map of Uploaded Points:")
# m.to_streamlit()
# st.session_state.map_data = m
# elif shape_type.lower() == "polygon":
# if file_upload.name.endswith('.csv'):
# locations_df = pd.read_csv(file_upload)
# elif file_upload.name.endswith('.geojson'):
# locations_df = gpd.read_file(file_upload)
# elif file_upload.name.endswith('.kml'):
# locations_df = gpd.read_file(file_upload)
# else:
# st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
# locations_df = pd.DataFrame()
# if 'geometry' in locations_df.columns:
# if locations_df.geometry.geom_type.isin(['Point', 'MultiPoint']).any():
# st.warning("The uploaded file contains point data. Please select 'Point' for processing.")
# st.stop()
# with st.spinner('Processing Map...'):
# if locations_df is not None and not locations_df.empty:
# if 'geometry' not in locations_df.columns:
# st.error("Uploaded file is missing required 'geometry' column.")
# else:
# st.write("Preview of the uploaded polygons data:")
# st.dataframe(locations_df.head())
# centroid_lat = locations_df.geometry.centroid.y.mean()
# centroid_lon = locations_df.geometry.centroid.x.mean()
# m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10)
# for _, row in locations_df.iterrows():
# polygon = row['geometry']
# if polygon.is_valid:
# gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs)
# m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
# st.write("Map of Uploaded Polygons:")
# m.to_streamlit()
# st.session_state.map_data = m
# Ask user to upload a file based on shape type
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
if file_upload is not None:
# Read the user-uploaded file
if shape_type.lower() == "point":
if file_upload.name.endswith('.csv'):
locations_df = pd.read_csv(file_upload)
elif file_upload.name.endswith('.geojson'):
locations_df = gpd.read_file(file_upload)
elif file_upload.name.endswith('.kml'):
# Parse KML file for point data
kml_string = file_upload.read().decode('utf-8')
try:
# Use xml.etree.ElementTree with unique alias
root = XET.fromstring(kml_string)
ns = {'kml': 'http://www.opengis.net/kml/2.2'}
points = []
for placemark in root.findall('.//kml:Placemark', ns):
name = placemark.findtext('kml:name', default=f"Point_{len(points)}", namespaces=ns)
coords_elem = placemark.find('.//kml:Point/kml:coordinates', ns)
if coords_elem is not None:
coords_text = coords_elem.text.strip()
st.write(f"Debug: Point coordinates found - {coords_text}") # Debug output
coords = [c.strip() for c in coords_text.split(',')]
if len(coords) >= 2: # Ensure at least lon, lat
lon, lat = float(coords[0]), float(coords[1])
points.append({'name': name, 'geometry': f"POINT ({lon} {lat})"})
if not points:
st.error("No valid Point data found in the KML file.")
locations_df = pd.DataFrame()
else:
locations_df = gpd.GeoDataFrame(points, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in points]), crs="EPSG:4326")
except Exception as e:
st.error(f"Error parsing KML file: {str(e)}")
locations_df = pd.DataFrame()
else:
st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
locations_df = pd.DataFrame()
if 'geometry' in locations_df.columns:
if locations_df.geometry.geom_type.isin(['Polygon', 'MultiPolygon']).any():
st.warning("The uploaded file contains polygon data. Please select 'Polygon' for processing.")
st.stop()
with st.spinner('Processing Map...'):
if locations_df is not None and not locations_df.empty:
if 'geometry' in locations_df.columns:
locations_df['latitude'] = locations_df['geometry'].y
locations_df['longitude'] = locations_df['geometry'].x
if 'latitude' not in locations_df.columns or 'longitude' not in locations_df.columns:
st.error("Uploaded file is missing required 'latitude' or 'longitude' columns.")
else:
st.write("Preview of the uploaded points data:")
st.dataframe(locations_df.head())
m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
for _, row in locations_df.iterrows():
latitude = row['latitude']
longitude = row['longitude']
if pd.isna(latitude) or pd.isna(longitude):
continue
m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
st.write("Map of Uploaded Points:")
m.to_streamlit()
st.session_state.map_data = m
elif shape_type.lower() == "polygon":
if file_upload.name.endswith('.csv'):
locations_df = pd.read_csv(file_upload)
elif file_upload.name.endswith('.geojson'):
locations_df = gpd.read_file(file_upload)
elif file_upload.name.endswith('.kml'):
# Parse KML file for polygon data
kml_string = file_upload.read().decode('utf-8')
try:
root = XET.fromstring(kml_string)
ns = {'kml': 'http://www.opengis.net/kml/2.2'}
polygons = []
for placemark in root.findall('.//kml:Placemark', ns):
name = placemark.findtext('kml:name', default=f"Polygon_{len(polygons)}", namespaces=ns)
coords_elem = placemark.find('.//kml:Polygon//kml:coordinates', ns)
if coords_elem is not None:
coords_text = ' '.join(coords_elem.text.split()) # Normalize whitespace
st.write(f"Debug: Polygon coordinates found - {coords_text}") # Debug output
coord_pairs = [pair.split(',')[:2] for pair in coords_text.split() if pair]
if len(coord_pairs) >= 4: # Minimum 4 points for a closed polygon
coords_str = " ".join([f"{float(lon)} {float(lat)}" for lon, lat in coord_pairs])
polygons.append({'name': name, 'geometry': f"POLYGON (({coords_str}))"})
if not polygons:
st.error("No valid Polygon data found in the KML file.")
locations_df = pd.DataFrame()
else:
locations_df = gpd.GeoDataFrame(polygons, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in polygons]), crs="EPSG:4326")
except Exception as e:
st.error(f"Error parsing KML file: {str(e)}")
locations_df = pd.DataFrame()
else:
st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
locations_df = pd.DataFrame()
if 'geometry' in locations_df.columns:
if locations_df.geometry.geom_type.isin(['Point', 'MultiPoint']).any():
st.warning("The uploaded file contains point data. Please select 'Point' for processing.")
st.stop()
with st.spinner('Processing Map...'):
if locations_df is not None and not locations_df.empty:
if 'geometry' not in locations_df.columns:
st.error("Uploaded file is missing required 'geometry' column.")
else:
st.write("Preview of the uploaded polygons data:")
st.dataframe(locations_df.head())
centroid_lat = locations_df.geometry.centroid.y.mean()
centroid_lon = locations_df.geometry.centroid.x.mean()
m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10)
for _, row in locations_df.iterrows():
polygon = row['geometry']
if polygon.is_valid:
gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs)
m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
st.write("Map of Uploaded Polygons:")
m.to_streamlit()
st.session_state.map_data = m
# ... (Rest of the code until convert_to_ee_geometry) ...
# Initialize session state for storing results
if 'results' not in st.session_state:
st.session_state.results = []
if 'last_params' not in st.session_state:
st.session_state.last_params = {}
if 'map_data' not in st.session_state:
st.session_state.map_data = None
if 'show_example' not in st.session_state:
st.session_state.show_example = True
# Function to check if parameters have changed
def parameters_changed():
return (
st.session_state.last_params.get('main_selection') != main_selection or
st.session_state.last_params.get('dataset_id') != dataset_id or
st.session_state.last_params.get('selected_bands') != selected_bands or
st.session_state.last_params.get('custom_formula') != custom_formula or
st.session_state.last_params.get('start_date_str') != start_date_str or
st.session_state.last_params.get('end_date_str') != end_date_str or
st.session_state.last_params.get('shape_type') != shape_type or
st.session_state.last_params.get('file_upload') != file_upload or
st.session_state.last_params.get('kernel_size') != kernel_size or
st.session_state.last_params.get('include_boundary') != include_boundary
)
# If parameters have changed, reset the results
if parameters_changed():
st.session_state.results = []
st.session_state.last_params = {
'main_selection': main_selection,
'dataset_id': dataset_id,
'selected_bands': selected_bands,
'custom_formula': custom_formula,
'start_date_str': start_date_str,
'end_date_str': end_date_str,
'shape_type': shape_type,
'file_upload': file_upload,
'kernel_size': kernel_size,
'include_boundary': include_boundary
}
# Function to calculate custom formula
def calculate_custom_formula(image, geometry, selected_bands, custom_formula, reducer_choice, scale=30):
try:
band_values = {}
band_names = image.bandNames().getInfo()
for band in selected_bands:
if band not in band_names:
raise ValueError(f"Band '{band}' not found in the dataset.")
band_values[band] = image.select(band)
reducer = get_reducer(reducer_choice)
reduced_values = {}
for band in selected_bands:
value = band_values[band].reduceRegion(
reducer=reducer,
geometry=geometry,
scale=scale
).get(band).getInfo()
reduced_values[band] = float(value if value is not None else 0)
formula = custom_formula
for band in selected_bands:
formula = formula.replace(band, str(reduced_values[band]))
result = eval(formula, {"__builtins__": {}}, reduced_values)
if not isinstance(result, (int, float)):
raise ValueError("Formula did not result in a numeric value.")
return ee.Image.constant(result).rename('custom_result')
except ZeroDivisionError:
st.error("Error: Division by zero in the formula.")
return ee.Image(0).rename('custom_result').set('error', 'Division by zero')
except SyntaxError:
st.error(f"Error: Invalid syntax in formula '{custom_formula}'.")
return ee.Image(0).rename('custom_result').set('error', 'Invalid syntax')
except ValueError as e:
st.error(f"Error: {str(e)}")
return ee.Image(0).rename('custom_result').set('error', str(e))
except Exception as e:
st.error(f"Unexpected error: {e}")
return ee.Image(0).rename('custom_result').set('error', str(e))
# Function to calculate index for a period
def calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice):
return calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice)
# Aggregation functions
def aggregate_data_custom(collection):
collection = collection.map(lambda image: image.set('day', ee.Date(image.get('system:time_start')).format('YYYY-MM-dd')))
grouped_by_day = collection.aggregate_array('day').distinct()
def calculate_daily_mean(day):
daily_collection = collection.filter(ee.Filter.eq('day', day))
daily_mean = daily_collection.mean()
return daily_mean.set('day', day)
daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
return ee.ImageCollection(daily_images)
def aggregate_data_weekly(collection):
def set_week_start(image):
date = ee.Date(image.get('system:time_start'))
days_since_week_start = date.getRelative('day', 'week')
offset = ee.Number(days_since_week_start).multiply(-1)
week_start = date.advance(offset, 'day')
return image.set('week_start', week_start.format('YYYY-MM-dd'))
collection = collection.map(set_week_start)
grouped_by_week = collection.aggregate_array('week_start').distinct()
def calculate_weekly_mean(week_start):
weekly_collection = collection.filter(ee.Filter.eq('week_start', week_start))
weekly_mean = weekly_collection.mean()
return weekly_mean.set('week_start', week_start)
weekly_images = ee.List(grouped_by_week.map(calculate_weekly_mean))
return ee.ImageCollection(weekly_images)
def aggregate_data_monthly(collection, start_date, end_date):
collection = collection.filterDate(start_date, end_date)
collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM')))
grouped_by_month = collection.aggregate_array('month').distinct()
def calculate_monthly_mean(month):
monthly_collection = collection.filter(ee.Filter.eq('month', month))
monthly_mean = monthly_collection.mean()
return monthly_mean.set('month', month)
monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean))
return ee.ImageCollection(monthly_images)
def aggregate_data_yearly(collection):
collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY')))
grouped_by_year = collection.aggregate_array('year').distinct()
def calculate_yearly_mean(year):
yearly_collection = collection.filter(ee.Filter.eq('year', year))
yearly_mean = yearly_collection.mean()
return yearly_mean.set('year', year)
yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean))
return ee.ImageCollection(yearly_images)
# Process aggregation function
def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula="", kernel_size=None, include_boundary=None):
aggregated_results = []
if not custom_formula:
st.error("Custom formula cannot be empty. Please provide a formula.")
return aggregated_results
total_steps = len(locations_df)
progress_bar = st.progress(0)
progress_text = st.empty()
with st.spinner('Processing data...'):
if shape_type.lower() == "point":
for idx, row in locations_df.iterrows():
latitude = row.get('latitude')
longitude = row.get('longitude')
if pd.isna(latitude) or pd.isna(longitude):
st.warning(f"Skipping location {idx} with missing latitude or longitude")
continue
location_name = row.get('name', f"Location_{idx}")
if kernel_size == "3x3 Kernel":
buffer_size = 45 # 90m x 90m
roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
elif kernel_size == "5x5 Kernel":
buffer_size = 75 # 150m x 150m
roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
else: # Point
roi = ee.Geometry.Point([longitude, latitude])
collection = ee.ImageCollection(dataset_id) \
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
.filterBounds(roi)
if aggregation_period.lower() == 'custom (start date to end date)':
collection = aggregate_data_custom(collection)
elif aggregation_period.lower() == 'weekly':
collection = aggregate_data_weekly(collection)
elif aggregation_period.lower() == 'monthly':
collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
elif aggregation_period.lower() == 'yearly':
collection = aggregate_data_yearly(collection)
image_list = collection.toList(collection.size())
processed_weeks = set()
for i in range(image_list.size().getInfo()):
image = ee.Image(image_list.get(i))
if aggregation_period.lower() == 'custom (start date to end date)':
timestamp = image.get('day')
period_label = 'Date'
date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
elif aggregation_period.lower() == 'weekly':
timestamp = image.get('week_start')
period_label = 'Week'
date = ee.String(timestamp).getInfo()
if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or
pd.to_datetime(date) > pd.to_datetime(end_date_str) or
date in processed_weeks):
continue
processed_weeks.add(date)
elif aggregation_period.lower() == 'monthly':
timestamp = image.get('month')
period_label = 'Month'
date = ee.Date(timestamp).format('YYYY-MM').getInfo()
elif aggregation_period.lower() == 'yearly':
timestamp = image.get('year')
period_label = 'Year'
date = ee.Date(timestamp).format('YYYY').getInfo()
index_image = calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice)
try:
index_value = index_image.reduceRegion(
reducer=get_reducer(reducer_choice),
geometry=roi,
scale=30
).get('custom_result')
calculated_value = index_value.getInfo()
if isinstance(calculated_value, (int, float)):
aggregated_results.append({
'Location Name': location_name,
'Latitude': latitude,
'Longitude': longitude,
period_label: date,
'Start Date': start_date_str,
'End Date': end_date_str,
'Calculated Value': calculated_value
})
else:
st.warning(f"Skipping invalid value for {location_name} on {date}")
except Exception as e:
st.error(f"Error retrieving value for {location_name}: {e}")
progress_percentage = (idx + 1) / total_steps
progress_bar.progress(progress_percentage)
progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
elif shape_type.lower() == "polygon":
for idx, row in locations_df.iterrows():
polygon_name = row.get('name', f"Polygon_{idx}")
polygon_geometry = row.get('geometry')
location_name = polygon_name
try:
roi = convert_to_ee_geometry(polygon_geometry)
if not include_boundary:
roi = roi.buffer(-30).bounds()
except ValueError as e:
st.warning(f"Skipping invalid polygon {polygon_name}: {e}")
continue
collection = ee.ImageCollection(dataset_id) \
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
.filterBounds(roi)
if aggregation_period.lower() == 'custom (start date to end date)':
collection = aggregate_data_custom(collection)
elif aggregation_period.lower() == 'weekly':
collection = aggregate_data_weekly(collection)
elif aggregation_period.lower() == 'monthly':
collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
elif aggregation_period.lower() == 'yearly':
collection = aggregate_data_yearly(collection)
image_list = collection.toList(collection.size())
processed_weeks = set()
for i in range(image_list.size().getInfo()):
image = ee.Image(image_list.get(i))
if aggregation_period.lower() == 'custom (start date to end date)':
timestamp = image.get('day')
period_label = 'Date'
date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
elif aggregation_period.lower() == 'weekly':
timestamp = image.get('week_start')
period_label = 'Week'
date = ee.String(timestamp).getInfo()
if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or
pd.to_datetime(date) > pd.to_datetime(end_date_str) or
date in processed_weeks):
continue
processed_weeks.add(date)
elif aggregation_period.lower() == 'monthly':
timestamp = image.get('month')
period_label = 'Month'
date = ee.Date(timestamp).format('YYYY-MM').getInfo()
elif aggregation_period.lower() == 'yearly':
timestamp = image.get('year')
period_label = 'Year'
date = ee.Date(timestamp).format('YYYY').getInfo()
index_image = calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice)
try:
index_value = index_image.reduceRegion(
reducer=get_reducer(reducer_choice),
geometry=roi,
scale=30
).get('custom_result')
calculated_value = index_value.getInfo()
if isinstance(calculated_value, (int, float)):
aggregated_results.append({
'Location Name': location_name,
period_label: date,
'Start Date': start_date_str,
'End Date': end_date_str,
'Calculated Value': calculated_value
})
else:
st.warning(f"Skipping invalid value for {location_name} on {date}")
except Exception as e:
st.error(f"Error retrieving value for {location_name}: {e}")
progress_percentage = (idx + 1) / total_steps
progress_bar.progress(progress_percentage)
progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
if aggregated_results:
result_df = pd.DataFrame(aggregated_results)
if aggregation_period.lower() == 'custom (start date to end date)':
agg_dict = {
'Start Date': 'first',
'End Date': 'first',
'Calculated Value': 'mean'
}
if shape_type.lower() == 'point':
agg_dict['Latitude'] = 'first'
agg_dict['Longitude'] = 'first'
aggregated_output = result_df.groupby('Location Name').agg(agg_dict).reset_index()
aggregated_output.rename(columns={'Calculated Value': 'Aggregated Value'}, inplace=True)
return aggregated_output.to_dict(orient='records')
else:
return result_df.to_dict(orient='records')
return []
# Button to trigger calculation
if st.button(f"Calculate {custom_formula}"):
if file_upload is not None:
if shape_type.lower() in ["point", "polygon"]:
results = process_aggregation(
locations_df,
start_date_str,
end_date_str,
dataset_id,
selected_bands,
reducer_choice,
shape_type,
aggregation_period,
custom_formula,
kernel_size=kernel_size,
include_boundary=include_boundary
)
if results:
result_df = pd.DataFrame(results)
st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}")
st.dataframe(result_df)
filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv"
st.download_button(
label="Download results as CSV",
data=result_df.to_csv(index=False).encode('utf-8'),
file_name=filename,
mime='text/csv'
)
# Show an example calculation
if st.session_state.show_example and results:
example_result = results[0]
example_image = ee.ImageCollection(dataset_id).filterDate(start_date_str, end_date_str).first()
example_roi = (
ee.Geometry.Point([example_result['Longitude'], example_result['Latitude']])
if shape_type.lower() == 'point'
else convert_to_ee_geometry(locations_df['geometry'].iloc[0])
)
example_values = {}
for band in selected_bands:
value = example_image.select(band).reduceRegion(
reducer=get_reducer(reducer_choice),
geometry=example_roi,
scale=30
).get(band).getInfo()
example_values[band] = float(value if value is not None else 0)
example_formula = custom_formula
for band in selected_bands:
example_formula = example_formula.replace(band, str(example_values[band]))
# st.write(f"Example Calculation: {custom_formula} -> {example_formula} = {example_result.get('Calculated Value', example_result.get('Aggregated Value'))}")
st.session_state.show_example = False
st.success('Processing complete!')
else:
st.warning("No results were generated. Check your inputs or formula.")
else:
st.warning("Please upload a file to process.")
else:
st.warning("Please upload a file to proceed.") |