File size: 9,792 Bytes
d23f61d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92a856d
d23f61d
 
 
 
 
92a856d
d23f61d
 
 
 
 
 
 
 
 
 
bfa87e1
d23f61d
 
 
 
92a856d
bfe5bb1
d23f61d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92a856d
d23f61d
92a856d
d23f61d
 
 
 
 
 
 
82e427b
92a856d
d23f61d
92a856d
 
d23f61d
 
82e427b
92a856d
d23f61d
 
 
 
 
 
 
 
 
 
bfa87e1
92a856d
 
d23f61d
92a856d
 
d23f61d
92a856d
 
d23f61d
92a856d
 
d23f61d
92a856d
 
d23f61d
92a856d
 
d23f61d
 
 
8a9aa68
d23f61d
 
 
 
 
92a856d
 
d23f61d
8a9aa68
d23f61d
 
 
 
 
 
92a856d
 
8a9aa68
92a856d
d23f61d
92a856d
d23f61d
bfa87e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92a856d
d23f61d
 
2cf1172
d23f61d
 
 
 
92a856d
d23f61d
 
92a856d
d23f61d
2cf1172
 
d63d0a2
d23f61d
2cf1172
 
d23f61d
bcd5c3f
92a856d
d23f61d
92a856d
d23f61d
 
f08d736
 
d23f61d
f08d736
 
 
 
 
 
 
 
 
 
 
 
d23f61d
 
92a856d
 
d23f61d
 
92a856d
 
d23f61d
cb6c3d2
92a856d
d23f61d
 
92a856d
d23f61d
 
92a856d
cb6c3d2
92a856d
d23f61d
 
92a856d
 
 
 
d23f61d
cb6c3d2
92a856d
d23f61d
 
92a856d
d23f61d
 
92a856d
bcd5c3f
 
d23f61d
 
92a856d
 
d23f61d
 
d63d0a2
d23f61d
 
 
 
 
 
92a856d
 
 
d23f61d
d9c8561
d23f61d
d63d0a2
92a856d
 
f40dd20
d23f61d
d9c8561
d23f61d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import streamlit as st
import torch
from tqdm import tqdm
from transformers import pipeline
import numpy as np
import time
import string


# JS
import nltk
nltk.download('wordnet')
from nltk.corpus import wordnet as wn
from nltk.tokenize import word_tokenize

@st.cache_resource
def get_models_context(llama=False):
  st.write('Loading the model...')
  model = pipeline("fill-mask")
  st.write("_The assistant is loaded and ready to use! :tada:_")
  return model 

model_context = get_models_context()

def remove_punctuation(word):
    # Create a translation table that maps all punctuation characters to None
    translator = str.maketrans('', '', string.punctuation)
    
    # Use the translate method to remove punctuation from the word
    word_without_punctuation = word.translate(translator)
    
    return word_without_punctuation

def return_top_k_context(sentence):

  if sentence[-1] != ".":
    sentence = sentence + "."
    
  output = model_context(sentence) 
  output = [output[i]['token_str'].strip() for i in range(len(output))]
  return output


def get_text():
  input_text = st.chat_input()
  return input_text

def write_bot(input, remember=True, blink=True):
    with st.chat_message('assistant'):
      message_placeholder = st.empty()
      full_response = input
      if blink == True:
        response = ''
        for chunk in full_response.split():
          response += chunk + " "
          time.sleep(0.05)
          # Add a blinking cursor to simulate typing
          message_placeholder.markdown(response + "β–Œ") 
        time.sleep(0.5)
      message_placeholder.markdown(full_response)
    if remember == True:
      st.session_state.messages_context.append({'role': 'assistant', 'content': full_response})
    
def ask_if_helped_context():
  y = st.button('Yes!', key=60)
  n = st.button('No...', key=61)
  new = st.button('I have a new word', key=62)
  if y:
    write_bot("I am happy to help!")
    again = st.button('Play again')
    if again:
      write_bot("Please give a sentence using a <mask> instead of the word you have in mind!")
    st.session_state.is_helpful_context['ask'] = False
  elif n:
    st.session_state.actions_context.append('cue')
    st.session_state.is_helpful_context['ask'] = False
    #cue_generation()
  elif new:
    write_bot("Please give a sentence using a <mask> instead of the word you have in mind!")
    st.session_state.is_helpful_context['ask'] = False


def postproc_wn(related_words, syns=False):
    if syns:
        related_words = [word.split('.')[0] if word[0] != "." else word.split('.')[1] for word in related_words]
    else:
        related_words = [word.name().split('.')[0] if word.name()[0] != "." else word.name().split('.')[1] for word in related_words]
    related_words = [word.replace("_", " ") for word in related_words]

    return related_words
    
if 'messages_context' not in st.session_state:
  st.session_state.messages_context = []
  
if 'results_context' not in st.session_state:
  st.session_state.results_context = {'results_context': False, 'results_context_print': False}
  
if 'actions_context' not in st.session_state:
  st.session_state.actions_context = [""]
  
if 'counter_context' not in st.session_state:
  st.session_state.counter_context = {"letter_count": 0, "word_count": 0}
  
if 'is_helpful_context' not in st.session_state:
  st.session_state.is_helpful_context = {'ask':False}
  
if 'descriptions_context' not in st.session_state:
  st.session_state.descriptions_context = []
  
st.title("You name it! πŸ—£")

with st.chat_message('user', avatar='julian.jpg'):
  st.write("Hey assistant!")
  
bot = st.chat_message('assistant')
bot.write("Hello human! Wanna practice naming some words?")

#for showing history of messages_context
for message in st.session_state.messages_context:
  if message['role'] == 'user':
    with st.chat_message(message['role'], avatar='julian.jpg'):
      st.markdown(message['content'])
  else:
    with st.chat_message(message['role']):
      st.markdown(message['content'])
  
#display user message in chat message container
prompt_context = get_text() 
if prompt_context:
  with st.chat_message('user', avatar="julian.jpg"):
    st.markdown(prompt_context)
  #add to history
  st.session_state.messages_context.append({'role': 'user', 'content': prompt_context})
  #TODO: replace it with zero-shot classifier
  yes = ['yes', 'again', 'sure', 'new word', 'yes!', 'yep', 'yeah']
  try:
    if prompt_context.lower() in yes:
        write_bot("Please give a sentence using a <mask> instead of the word you have in mind!")
    #if previously we asked to give a prompt_context
    elif (st.session_state.messages_context[-2]['content'] == "Please give a sentence using a <mask> instead of the word you have in mind!") & (st.session_state.messages_context[-1]['content'] != "no"):
        write_bot("Great! Let me think what it could be...")
        st.session_state.descriptions_context.append(prompt_context)
        st.session_state.results_context['results_context'] = return_top_k_context(st.session_state.descriptions_context[-1])
        st.session_state.results_context['results_context_print'] = dict(zip(range(1, len(st.session_state.results_context['results_context'])+1), st.session_state.results_context['results_context']))
        write_bot("I think I have some ideas. Do you want to see my guesses or do you want a cue?")
        st.session_state.actions_context.append("result")
  except:
      write_bot("Sorry, I didn't understand you... I am still learning :sob: For now, could you respond with 'yes' or 'no'? ")
      
if st.session_state.actions_context[-1] == "result":
  col1, col2, col3, col4, col5 = st.columns(5)
  with col1:
    a1 = st.button('Results', key=10)
  with col2:
    a2 = st.button('Cue', key=11)
  if a1:
    write_bot("Here are my guesses about your word:")
    st.write(st.session_state.results_context['results_context_print'])
    time.sleep(1)
    write_bot('Does it help you remember the word?', remember=False)
    st.session_state.is_helpful_context['ask'] = True
  elif a2:
    write_bot(f'The first letter is {st.session_state.results_context["results_context"][0][0]}.')
    time.sleep(1)
    # st.session_state.actions_context.append('cue')
    #cue_generation()
    write_bot('Does it help you remember the word?', remember=False)
    st.session_state.is_helpful_context['ask'] = True
    
if st.session_state.is_helpful_context['ask'] == True:
    ask_if_helped_context()

if st.session_state.actions_context[-1] == 'cue':
  guessed = False
  write_bot('What do you want to see?', remember=False, blink=False)
  col1, col2, col3, col4, col5 = st.columns(5)


  with col1:
    b1 = st.button("Next letter", key="1")
  with col2:
    b2 = st.button("Related words")
  with col3:
    b3 = st.button("Next word", key="2")
  with col4:
    b4 = st.button("All words", key="3")

  b5 = st.button("I remembered the word!", key="4", type='primary')
  b6 = st.button("Exit", key="5", type='primary')
  new = st.button('Play again', key=64, type='primary')
  while guessed == False:
    # JS
    word_count = st.session_state.counter_context["word_count"]
    target = st.session_state.results_context["results_context"][word_count]

    if b1:
      st.session_state.counter_context["letter_count"] += 1
      letter_count = st.session_state.counter_context["letter_count"]
      if letter_count < len(target):
        write_bot(f'The word starts with {st.session_state.results_context["results_context"][word_count][:letter_count]}.', remember=False)
        st.session_state.is_helpful_context['ask'] = True
      else:
        write_bot(f'This is my predicted word: "{target}". Does this match your query?')
        st.session_state.is_helpful_context['ask'] = True

    elif b2:
      rels = return_top_k_context(st.session_state.descriptions_context[-1], word=target, rels=True)
      write_bot(f'Here are words that are related to your word: {", ".join(rels)}.', remember=False)
      st.session_state.is_helpful_context['ask'] = True

    elif b3:
      st.session_state.counter_context["letter_count"] = 1
      letter_count = st.session_state.counter_context["letter_count"]
      st.session_state.counter_context["word_count"] += 1
      word_count = st.session_state.counter_context["word_count"]
      if letter_count < len(target):
        write_bot(f'The next word starts with {st.session_state.results_context["results_context"][word_count][:letter_count]}.', remember=False)
        st.session_state.is_helpful_context['ask'] = True
      else:
        write_bot(f'This is my predicted word: "{target}". Does this match your query?')
        st.session_state.is_helpful_context['ask'] = True

    elif b4:
      write_bot(f"Here are all my guesses about your word: {st.session_state.results_context['results_context_print']}")
      st.session_state.is_helpful_context['ask'] = True
      
    elif b5:
      write_bot("Yay! I am happy I could be of help!")
      st.session_state.counter_context["word_count"] = 0
      st.session_state.counter_context["letter_count"] = 0
      new = st.button('Play again', key=63)
      if new:
        write_bot("Please give a sentence using a <mask> instead of the word you have in mind!")
      guessed = True
    
      break
    
    elif b6:
      write_bot("I am sorry I couldn't help you this time. See you soon!")
      st.session_state.counter_context["word_count"] = 0
      st.session_state.counter_context["letter_count"] = 0
    st.session_state.actions_context.append('cue')
    
    
    if new:
      write_bot("Please give a sentence using a <mask> instead of the word you have in mind!")
      st.session_state.counter_context["word_count"] = 0
      st.session_state.counter_context["letter_count"] = 0
    break