Spaces:
Runtime error
Runtime error
File size: 4,831 Bytes
8b582d7 e7abd03 1f3ecf4 3e1f1d3 259ef44 e7abd03 6c4a2c9 e7abd03 1f1368a e7abd03 3e1f1d3 1f1368a e7abd03 d1b7d86 21336c5 e7abd03 08987a7 55ff761 08987a7 d1b7d86 523f972 55ff761 08987a7 e7abd03 3e1f1d3 b71f887 d1b7d86 b71f887 3e1f1d3 55ff761 21336c5 55ff761 b71f887 55ff761 b71f887 3e1f1d3 55ff761 3e1f1d3 55ff761 3e1f1d3 e7abd03 6f729e6 e7abd03 6f729e6 e7abd03 6f729e6 e7abd03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import gradio as gr
import pandas as pd
import numpy as np
from transformers import pipeline, BertTokenizer, BertModel
import faiss
import torch
import json
import spaces
import logging
# Set up logging
logging.basicConfig(level=logging.DEBUG)
# Load CSV data
data = pd.read_csv('RBDx10kstats.csv')
# Function to safely convert JSON strings to numpy arrays
def safe_json_loads(x):
try:
return np.array(json.loads(x), dtype=np.float16) # Ensure the array is of type float32
except json.JSONDecodeError as e:
logging.error(f"Error decoding JSON: {e}")
return np.array([], dtype=np.float16) # Return an empty array or handle it as appropriate
# Apply the safe_json_loads function to the embedding column
data['embedding'] = data['embedding'].apply(safe_json_loads)
# Filter out any rows with empty embeddings
data = data[data['embedding'].apply(lambda x: x.size > 0)]
# Initialize FAISS index
dimension = len(data['embedding'].iloc[0])
res = faiss.StandardGpuResources() # use a single GPU
# Create FAISS index
if faiss.get_num_gpus() > 0:
gpu_index = faiss.IndexFlatL2(dimension)
gpu_index = faiss.index_cpu_to_gpu(res, 0, gpu_index) # move to GPU
else:
gpu_index = faiss.IndexFlatL2(dimension) # fall back to CPU
# Ensure embeddings are stacked as float32
embeddings = np.vstack(data['embedding'].values).astype(np.float16)
logging.debug(f"Embeddings shape: {embeddings.shape}, dtype: {embeddings.dtype}")
gpu_index.add(embeddings)
# Check if GPU is available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load QA model
qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad", device=0 if torch.cuda.is_available() else -1)
# Load BERT model and tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased').to(device)
# Function to embed the question using BERT
def embed_question(question, model, tokenizer):
try:
inputs = tokenizer(question, return_tensors='pt').to(device)
logging.debug(f"Tokenized inputs: {inputs}")
with torch.no_grad():
outputs = model(**inputs)
embedding = outputs.last_hidden_state.mean(dim=1).cpu().numpy().astype(np.float16)
logging.debug(f"Question embedding shape: {embedding.shape}")
logging.debug(f"Question embedding content: {embedding}")
return embedding
except Exception as e:
logging.error(f"Error embedding question: {e}")
raise
# Function to retrieve the relevant document and generate a response
@spaces.GPU(duration=120)
def retrieve_and_generate(question):
logging.debug(f"Received question: {question}")
try:
# Embed the question
question_embedding = embed_question(question, model, tokenizer)
# Ensure the embedding is in the correct format for FAISS search
question_embedding = question_embedding.astype(np.float16)
# Search in FAISS index
try:
logging.debug(f"Searching FAISS index with question embedding: {question_embedding}")
_, indices = gpu_index.search(question_embedding, k=1)
if indices.size == 0:
logging.error("No results found in FAISS search.")
return "No relevant document found."
logging.debug(f"Indices found: {indices}")
except Exception as e:
logging.error(f"Error during FAISS search: {e}")
return f"An error occurred during search: {e}"
# Retrieve the most relevant document
try:
relevant_doc = data.iloc[indices[0][0]]
logging.debug(f"Relevant document: {relevant_doc}")
except Exception as e:
logging.error(f"Error retrieving document: {e}")
return "An error occurred while retrieving the document. Please try again."
# Use the QA model to generate the answer
try:
context = relevant_doc['Abstract']
response = qa_model(question=question, context=context)
logging.debug(f"Response: {response}")
return response['answer']
except Exception as e:
logging.error(f"Error generating answer: {e}")
return "An error occurred while generating the answer. Please try again."
except Exception as e:
logging.error(f"Error during retrieval and generation: {e}")
return "An error occurred. Please try again."
# Create a Gradio interface
interface = gr.Interface(
fn=retrieve_and_generate,
inputs=gr.Textbox(lines=2, placeholder="Ask a question about the documents..."),
outputs="text",
title="RAG Chatbot",
description="Ask questions about the documents in the CSV file."
)
# Launch the Gradio app
interface.launch() |