File size: 3,665 Bytes
6eddc8a
 
 
 
 
 
51148e0
e2adc2e
6eddc8a
a886a2c
 
 
 
51148e0
 
 
 
 
a886a2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51148e0
 
a886a2c
 
 
 
 
 
 
 
 
 
 
 
 
 
51148e0
a886a2c
 
 
 
 
 
6eddc8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51148e0
 
 
6eddc8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import graphviz
import json
from tempfile import NamedTemporaryFile
import os
from graph_generator_utils import add_nodes_and_edges

def generate_concept_map(json_input: str, base_color: str) -> str:
    """
    Generates a concept map from JSON input.

    Args:
        json_input (str): A JSON string describing the concept map structure.
                          It must follow the Expected JSON Format Example below.
        base_color (str): The hexadecimal color string (e.g., '#19191a') for the base
                          color of the nodes, from which a gradient will be generated.

    Returns:
        str: The filepath to the generated PNG image file.

    Expected JSON Format Example:
    {
      "central_node": "Artificial Intelligence (AI)",
      "nodes": [
        {
          "id": "ml_fundamental",
          "label": "Machine Learning",
          "relationship": "is essential for",
          "subnodes": [
            {
              "id": "dl_branch",
              "label": "Deep Learning",
              "relationship": "for example",
              "subnodes": [
                {"id": "cnn_example", "label": "CNNs", "relationship": "for example"},
                {"id": "rnn_example", "label": "RNNs", "relationship": "for example"}
              ]
            }
          ]
        },
        {
          "id": "ai_types",
          "label": "Types",
          "relationship": "formed by",
          "subnodes": [
            {
              "id": "agi_type",
              "label": "AGI",
              "relationship": "this is",
              "subnodes": [
                {"id": "strong_ai", "label": "Strong AI", "relationship": "provoked by"}
              ]
            }
          ]
        }
      ]
    }
    """
    try:
        if not json_input.strip():
            return "Error: Empty input"
            
        data = json.loads(json_input)
        
        if 'central_node' not in data or 'nodes' not in data:
            raise ValueError("Missing required fields: central_node or nodes")

        dot = graphviz.Digraph(
            name='ConceptMap',
            format='png',
            graph_attr={
                'rankdir': 'TB',        # Top-to-Bottom layout (vertical hierarchy)
                'splines': 'ortho',     # Straight lines
                'bgcolor': 'white',     # White background
                'pad': '0.5'            # Padding around the graph
            }
        )
        
        # Ensure base_color is valid, fallback if not
        if not isinstance(base_color, str) or not base_color.startswith('#') or len(base_color) != 7:
            base_color = '#19191a' # Fallback to default dark if invalid

        # Central node styling (rounded box, dark color)
        dot.node(
            'central',
            data['central_node'],
            shape='box',            # Rectangular shape
            style='filled,rounded', # Filled and rounded corners
            fillcolor=base_color,   # Darkest color
            fontcolor='white',      # White text for dark background
            fontsize='16'           # Larger font for central node
        )
        
        # Add child nodes and edges recursively starting from depth 1
        add_nodes_and_edges(dot, 'central', data.get('nodes', []), current_depth=1, base_color=base_color)

        # Save to temporary file
        with NamedTemporaryFile(delete=False, suffix='.png') as tmp:
            dot.render(tmp.name, format='png', cleanup=True)
            return tmp.name + '.png'

    except json.JSONDecodeError:
        return "Error: Invalid JSON format"
    except Exception as e:
        return f"Error: {str(e)}"