Spaces:
Sleeping
Sleeping
File size: 4,065 Bytes
4d6e8c2 b133152 4d6e8c2 731e8c7 1c33274 70f5f26 1c33274 70f5f26 4d6e8c2 70f5f26 731e8c7 4d6e8c2 70f5f26 97e876f f1edb98 b133152 f1edb98 b133152 f1edb98 b133152 97e876f f1edb98 b133152 97e876f b133152 ccf8d15 70f5f26 4d6e8c2 70f5f26 4d6e8c2 1c33274 4d6e8c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import numpy as np
router = APIRouter()
DESCRIPTION = "FrugalDisinfoHunter Model"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: FrugalDisinfoHunter
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
# Model and Tokenizer
model_name = "Zen0/FrugalDisinfoHunter"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Tokenize the test data
test_texts = test_dataset["text"] # Extracting the 'text' column (quotes)
inputs = tokenizer(test_texts, padding=True, truncation=True, return_tensors="pt", max_length=512)
# Move model and inputs to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
inputs = {key: val.to(device) for key, val in inputs.items()}
# Run inference on the dataset using the model
with torch.no_grad(): # Disable gradient calculations
outputs = model(**inputs)
logits = outputs.logits
# Get predictions from the logits (choose the class with the highest logit)
predictions = torch.argmax(logits, dim=-1).cpu().numpy()
true_labels = test_dataset['label']
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results |