xcczach's picture
Upload 73 files
35c1cfd verified
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import logging
import math
import torch.nn as nn
import pdb
logger = logging.getLogger(__name__)
def conv3x3(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
def downsample_basic_block( inplanes, outplanes, stride ):
return nn.Sequential(
nn.Conv2d(inplanes, outplanes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(outplanes),
)
def downsample_basic_block_v2( inplanes, outplanes, stride ):
return nn.Sequential(
nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True, count_include_pad=False),
nn.Conv2d(inplanes, outplanes, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(outplanes),
)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, relu_type = 'relu' ):
super(BasicBlock, self).__init__()
assert relu_type in ['relu','prelu']
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
if relu_type == 'relu':
self.relu1 = nn.ReLU(inplace=True)
self.relu2 = nn.ReLU(inplace=True)
elif relu_type == 'prelu':
self.relu1 = nn.PReLU(num_parameters=planes)
self.relu2 = nn.PReLU(num_parameters=planes)
else:
raise Exception('relu type not implemented')
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu2(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000, relu_type = 'relu', gamma_zero = False, avg_pool_downsample = False):
self.inplanes = 64
self.relu_type = relu_type
self.gamma_zero = gamma_zero
self.downsample_block = downsample_basic_block_v2 if avg_pool_downsample else downsample_basic_block
super(ResNet, self).__init__()
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d(1)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
if self.gamma_zero:
for m in self.modules():
if isinstance(m, BasicBlock ):
m.bn2.weight.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = self.downsample_block( inplanes = self.inplanes,
outplanes = planes * block.expansion,
stride = stride )
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, relu_type = self.relu_type))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, relu_type = self.relu_type))
return nn.Sequential(*layers)
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
return x
class ResEncoder(nn.Module):
def __init__(self, relu_type, weights):
super(ResEncoder, self).__init__()
self.frontend_nout = 64
self.backend_out = 512
frontend_relu = nn.PReLU(num_parameters=self.frontend_nout) if relu_type == 'prelu' else nn.ReLU()
self.frontend3D = nn.Sequential(
nn.Conv3d(1, self.frontend_nout, kernel_size=(5, 7, 7), stride=(1, 2, 2), padding=(2, 3, 3), bias=False),
nn.BatchNorm3d(self.frontend_nout),
frontend_relu,
nn.MaxPool3d( kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)))
self.trunk = ResNet(BasicBlock, [2, 2, 2, 2], relu_type=relu_type)
if weights is not None:
logger.info(f"Load {weights} for resnet")
std = torch.load(weights, map_location=torch.device('cpu'))['model_state_dict']
frontend_std, trunk_std = OrderedDict(), OrderedDict()
for key, val in std.items():
new_key = '.'.join(key.split('.')[1:])
if 'frontend3D' in key:
frontend_std[new_key] = val
if 'trunk' in key:
trunk_std[new_key] = val
self.frontend3D.load_state_dict(frontend_std)
self.trunk.load_state_dict(trunk_std)
def forward(self, x):
B, C, T, H, W = x.size()
x = self.frontend3D(x)
Tnew = x.shape[2]
x = self.threeD_to_2D_tensor(x)
x = self.trunk(x)
x = x.view(B, Tnew, x.size(1))
x = x.transpose(1, 2).contiguous()
return x
def threeD_to_2D_tensor(self, x):
n_batch, n_channels, s_time, sx, sy = x.shape
x = x.transpose(1, 2).contiguous()
return x.reshape(n_batch*s_time, n_channels, sx, sy)