VenkateshRoshan
updated app by making it to public
3b21bbe
import json
import psutil
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
import os
import tarfile
from typing import List, Tuple
import boto3
from flask import Flask, Response, jsonify, request
import threading
import psutil
import logging
from waitress import serve
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class HealthCheckServer:
def __init__(self, bot=None):
self.app = Flask(__name__)
self.bot = bot
# Health check endpoint
@self.app.route("/ping", methods=["GET"])
def ping():
try:
# Check system health
healthy = self.check_system_health()
if healthy:
logger.info("Health check passed")
return Response(response='\n', status=200, mimetype='application/json')
else:
logger.error("Health check failed")
return Response(response='\n', status=500, mimetype='application/json')
except Exception as e:
logger.error(f"Health check error: {str(e)}")
return Response(response='\n', status=500, mimetype='application/json')
# Inference endpoint
@self.app.route("/invocations", methods=["POST"])
def invocations():
try:
if not request.is_json:
return Response(response='This predictor only supports JSON data',
status=415,
mimetype='text/plain')
data = request.get_json()
message = data.get('message', '')
if not message:
return Response(response=json.dumps({"error": "No message provided"}),
status=400,
mimetype='application/json')
response = self.bot.generate_response(message)
return Response(response=json.dumps({"response": response}),
status=200,
mimetype='application/json')
except Exception as e:
logger.error(f"Inference error: {str(e)}")
return Response(response=json.dumps({"error": str(e)}),
status=500,
mimetype='application/json')
def check_system_health(self):
"""Check if system and model are healthy"""
try:
# Check if model is loaded
if self.bot and not hasattr(self.bot, 'model'):
logger.error("Model not loaded")
return False
# Check memory usage
mem = psutil.virtual_memory()
if mem.percent > 90:
logger.error(f"High memory usage: {mem.percent}%")
return False
# Check CPU usage
if psutil.cpu_percent() > 95:
logger.error(f"High CPU usage: {psutil.cpu_percent()}%")
return False
# Log current resource usage
logger.info(f"System health: Memory {mem.percent}%, CPU {psutil.cpu_percent()}%")
return True
except Exception as e:
logger.error(f"Health check error: {str(e)}")
return False
def run(self):
"""Run the health check server"""
logger.info("Starting health check server on port 8080...")
serve(self.app, host='0.0.0.0', port=8080)
class CustomerSupportBot:
def __init__(self, model_path="models/customer_support_gpt"):
"""
Initialize the customer support bot with the fine-tuned model.
Args:
model_path (str): Path to the saved model and tokenizer
"""
self.process = psutil.Process(os.getpid())
self.model_path = model_path
self.model_file_path = os.path.join(self.model_path, "model.tar.gz")
self.s3 = boto3.client("s3")
self.model_key = "models/model.tar.gz"
self.bucket_name = "customer-support-gpt"
# Download and load the model
self.download_and_load_model()
def download_and_load_model(self):
# Check if the model directory exists
if not os.path.exists(self.model_path):
os.makedirs(self.model_path)
# Download model.tar.gz from S3 if not already downloaded
if not os.path.exists(self.model_file_path):
print("Downloading model from S3...")
self.s3.download_file(self.bucket_name, self.model_key, self.model_file_path)
print("Download complete. Extracting model files...")
# Extract the model files
with tarfile.open(self.model_file_path, "r:gz") as tar:
tar.extractall(self.model_path)
# Load the model and tokenizer from extracted files
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
self.model = AutoModelForCausalLM.from_pretrained(self.model_path)
print("Model and tokenizer loaded successfully.")
# Move model to GPU if available
self.device = "cpu" #"cuda" if torch.cuda.is_available() else "cpu"
self.model = self.model.to(self.device)
print(f'Model loaded on device: {self.device}')
def generate_response(self, message: str, max_length=100, temperature=0.7) -> str:
try:
input_text = f"Instruction: {message}\nResponse:"
# Tokenize input text
inputs = self.tokenizer(input_text, return_tensors="pt").to(self.device)
# Generate response using the model
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_length=max_length,
temperature=temperature,
num_return_sequences=1,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
do_sample=True,
top_p=0.95,
top_k=50
)
# Decode and format the response
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response.split("Response:")[-1].strip()
return response
except Exception as e:
return f"An error occurred: {str(e)}"
def monitor_resources(self) -> dict:
usage = {
"CPU (%)": self.process.cpu_percent(interval=1),
"RAM (GB)": self.process.memory_info().rss / (1024 ** 3)
}
return usage
def create_chat_interface():
bot = CustomerSupportBot(model_path="/app/models")
# Start health check server
health_server = HealthCheckServer(bot)
health_thread = threading.Thread(target=health_server.run, daemon=True)
health_thread.start()
# Function to run initial query
def initial_query():
welcome_message = "Hello! I'm your customer support assistant. How can I help you today?"
return "", [(None, welcome_message)]
def predict(message: str, history: List[Tuple[str, str]]) -> Tuple[str, List[Tuple[str, str]]]:
if not message:
return "", history
bot_response = bot.generate_response(message)
# Log resource usage
usage = bot.monitor_resources()
print("Resource Usage:", usage)
history.append((message, bot_response))
return "", history
# Create the Gradio interface with custom CSS
with gr.Blocks(css="""
.message-box {
margin-bottom: 10px;
}
.button-row {
display: flex;
gap: 10px;
margin-top: 10px;
}
""") as interface:
gr.Markdown("# Customer Support Chatbot")
gr.Markdown("Welcome! How can I assist you today?")
chatbot = gr.Chatbot(
label="Chat History",
height=500,
elem_classes="message-box",
# type="messages"
)
with gr.Row():
msg = gr.Textbox(
label="Your Message",
placeholder="Type your message here...",
lines=2,
elem_classes="message-box"
)
with gr.Row(elem_classes="button-row"):
submit = gr.Button("Send Message", variant="primary")
clear = gr.ClearButton([msg, chatbot], value="Clear Chat")
# Add example queries in a separate row
with gr.Row():
gr.Examples(
examples=[
"How do I reset my password?",
"What are your shipping policies?",
"I want to return a product.",
"How can I track my order?",
"What payment methods do you accept?"
],
inputs=msg,
label="Example Questions"
)
# Set up event handlers
submit_click = submit.click(
predict,
inputs=[msg, chatbot],
outputs=[msg, chatbot]
)
msg.submit(
predict,
inputs=[msg, chatbot],
outputs=[msg, chatbot]
)
# Add keyboard shortcut for submit
msg.change(lambda x: gr.update(interactive=bool(x.strip())), inputs=[msg], outputs=[submit])
print("Interface created successfully.")
# call the initial query function
# run a query first how are you and predict the output
print(predict("How are you", []))
# run a command which checks the resource usage
print(f'Bot Resource Usage : {bot.monitor_resources()}')
# show full system usage
print(f'CPU Percentage : {psutil.cpu_percent()}')
print(f'RAM Usage : {psutil.virtual_memory()}')
print(f'Swap Memory : {psutil.swap_memory()}')
return interface
if __name__ == "__main__":
demo = create_chat_interface()
print("Starting Gradio server...")
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860, # Changed to 7860 for Gradio
debug=True,
inline=False
)