File size: 12,035 Bytes
a98a37e
4ebd6c7
1115ab9
1a022bd
 
1115ab9
1a022bd
308bc46
1a022bd
 
 
 
1115ab9
1a022bd
 
 
 
 
 
 
 
 
 
 
 
 
 
c6d665e
cb052d2
1a022bd
 
 
 
 
 
 
 
 
 
 
308bc46
 
1a022bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1115ab9
1a022bd
 
 
 
1115ab9
1a022bd
308bc46
1a022bd
 
 
 
 
 
 
 
1115ab9
1a022bd
1115ab9
 
1a022bd
 
 
 
 
 
 
714ba23
1a022bd
 
 
 
 
 
 
 
 
 
 
 
 
1115ab9
1a022bd
 
 
 
 
 
 
1115ab9
1a022bd
 
 
 
 
 
 
 
 
 
 
1115ab9
1a022bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb052d2
1a022bd
308bc46
1a022bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import os
import subprocess
import random
import time
from typing import Dict, List, Tuple
from datetime import datetime
import logging

import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from huggingface_hub import InferenceClient, cached_download, Repository, HfApi
from IPython.display import display, HTML

# --- Configuration ---
VERBOSE = True
MAX_HISTORY = 5
MAX_TOKENS = 2048
TEMPERATURE = 0.7
TOP_P = 0.8
REPETITION_PENALTY = 1.5
DEFAULT_PROJECT_PATH = "./my-hf-project"  # Default project directory

# --- Logging Setup ---
logging.basicConfig(
    filename="app.log",
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s",
)

# --- Global Variables ---
current_model = None  # Store the currently loaded model
repo = None  # Store the Hugging Face Repository object
model_descriptions = {}  # Store model descriptions

# --- Functions ---
def format_prompt(message: str, history: List[Tuple[str, str]], max_history_turns: int = 2) -> str:
    prompt = ""
    for user_prompt, bot_response in history[-max_history_turns:]:
        prompt += f"Human: {user_prompt}\nAssistant: {bot_response}\n"
    prompt += f"Human: {message}\nAssistant:"
    return prompt

def generate_response(
    prompt: str,
    history: List[Tuple[str, str]],
    agent_name: str = "Generic Agent",
    sys_prompt: str = "",
    temperature: float = TEMPERATURE,
    max_new_tokens: int = MAX_TOKENS,
    top_p: float = TOP_P,
    repetition_penalty: float = REPETITION_PENALTY,
) -> str:
    global current_model
    if current_model is None:
        return "Error: Please load a model first."

    date_time_str = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    full_prompt = PREFIX.format(
        date_time_str=date_time_str,
        purpose=sys_prompt,
        agent_name=agent_name
    ) + format_prompt(prompt, history)

    if VERBOSE:
        logging.info(LOG_PROMPT.format(content=full_prompt))

    response = current_model(
        full_prompt,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True
    )[0]['generated_text']

    assistant_response = response.split("Assistant:")[-1].strip()

    if VERBOSE:
        logging.info(LOG_RESPONSE.format(resp=assistant_response))

    return assistant_response

def load_hf_model(model_name: str):
    """Loads a language model and fetches its description."""
    global current_model, model_descriptions
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        current_model = pipeline(
            "text-generation",
            model=model_name,
            tokenizer=tokenizer,
            model_kwargs={"load_in_8bit": True}
        )

        # Fetch and store the model description
        api = HfApi()
        model_info = api.model_info(model_name)
        model_descriptions[model_name] = model_info.pipeline_tag
        return f"Successfully loaded model: {model_name}"
    except Exception as e:
        return f"Error loading model: {str(e)}"

def execute_command(command: str, project_path: str = None) -> str:
    """Executes a shell command and returns the output."""
    try:
        if project_path:
            process = subprocess.Popen(command, shell=True, cwd=project_path, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
        else:
            process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
        output, error = process.communicate()
        if error:
            return f"Error: {error.decode('utf-8')}"
        return output.decode("utf-8")
    except Exception as e:
        return f"Error executing command: {str(e)}"

def create_hf_project(project_name: str, project_path: str = DEFAULT_PROJECT_PATH):
    """Creates a new Hugging Face project."""
    global repo
    try:
        if os.path.exists(project_path):
            return f"Error: Directory '{project_path}' already exists!"
        # Create the repository
        repo = Repository(local_dir=project_path, clone_from=None)
        repo.git_init()

        # Add basic files (optional, you can customize this)
        with open(os.path.join(project_path, "README.md"), "w") as f:
            f.write(f"# {project_name}\n\nA new Hugging Face project.")

        # Stage all changes
        repo.git_add(pattern="*")
        repo.git_commit(commit_message="Initial commit")

        return f"Hugging Face project '{project_name}' created successfully at '{project_path}'"
    except Exception as e:
        return f"Error creating Hugging Face project: {str(e)}"

def list_project_files(project_path: str = DEFAULT_PROJECT_PATH) -> str:
    """Lists files in the project directory."""
    try:
        files = os.listdir(project_path)
        if not files:
            return "Project directory is empty."
        return "\n".join(files)
    except Exception as e:
        return f"Error listing project files: {str(e)}"

def read_file_content(file_path: str, project_path: str = DEFAULT_PROJECT_PATH) -> str:
    """Reads and returns the content of a file in the project."""
    try:
        full_path = os.path.join(project_path, file_path)
        with open(full_path, "r") as f:
            content = f.read()
        return content
    except Exception as e:
        return f"Error reading file: {str(e)}"

def write_to_file(file_path: str, content: str, project_path: str = DEFAULT_PROJECT_PATH) -> str:
    """Writes content to a file in the project."""
    try:
        full_path = os.path.join(project_path, file_path)
        with open(full_path, "w") as f:
            f.write(content)
        return f"Successfully wrote to '{file_path}'"
    except Exception as e:
        return f"Error writing to file: {str(e)}"

def preview_project(project_path: str = DEFAULT_PROJECT_PATH):
    """Provides a preview of the project, if applicable."""
    # Assuming a simple HTML preview for now
    try:
        index_html_path = os.path.join(project_path, "index.html")
        if os.path.exists(index_html_path):
            with open(index_html_path, "r") as f:
                html_content = f.read()
            display(HTML(html_content))
            return "Previewing 'index.html'"
        else:
            return "No 'index.html' found for preview."
    except Exception as e:
        return f"Error previewing project: {str(e)}"

def main():
    with gr.Blocks() as demo:
        gr.Markdown("## FragMixt: Your Hugging Face No-Code App Builder")

        # --- Model Selection ---
        with gr.Tab("Model"):
            # --- Model Dropdown with Categories ---
            model_categories = gr.Dropdown(
                choices=["Text Generation", "Text Summarization", "Code Generation", "Translation", "Question Answering"],
                label="Model Category",
                value="Text Generation"
            )
            model_name = gr.Dropdown(
                choices=[],  # Initially empty, will be populated based on category
                label="Hugging Face Model Name",
            )
            load_button = gr.Button("Load Model")
            load_output = gr.Textbox(label="Output")
            model_description = gr.Markdown(label="Model Description")

            # --- Function to populate model names based on category ---
            def update_model_dropdown(category):
                models = []
                api = HfApi()
                for model in api.list_models():
                    if model.pipeline_tag == category:
                        models.append(model.modelId)
                return gr.Dropdown.update(choices=models)

            # --- Event handler for category dropdown ---
            model_categories.change(
                fn=update_model_dropdown,
                inputs=model_categories,
                outputs=model_name,
            )

            # --- Event handler to display model description ---
            def display_model_description(model_name):
                global model_descriptions
                if model_name in model_descriptions:
                    return model_descriptions[model_name]
                else:
                    return "Model description not available."

            model_name.change(
                fn=display_model_description,
                inputs=model_name,
                outputs=model_description,
            )

            load_button.click(load_hf_model, inputs=model_name, outputs=load_output)

        # --- Chat Interface ---
        with gr.Tab("Chat"):
            chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True)
            message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!")
            purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?")
            agent_name = gr.Dropdown(label="Agents", choices=["Generic Agent"], value="Generic Agent", interactive=True)
            sys_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True)
            temperature = gr.Slider(label="Temperature", value=TEMPERATURE, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs")
            max_new_tokens = gr.Slider(label="Max new tokens", value=MAX_TOKENS, minimum=0, maximum=1048 * 10, step=64, interactive=True, info="The maximum numbers of new tokens")
            top_p = gr.Slider(label="Top-p (nucleus sampling)", value=TOP_P, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens")
            repetition_penalty = gr.Slider(label="Repetition penalty", value=REPETITION_PENALTY, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
            submit_button = gr.Button(value="Send")
            history = gr.State([])

            def run_chat(purpose: str, message: str, agent_name: str, sys_prompt: str, temperature: float, max_new_tokens: int, top_p: float, repetition_penalty: float, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]]]:
                response = generate_response(message, history, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty)
                history.append((message, response))
                return history, history

            submit_button.click(run_chat, inputs=[purpose, message, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, history], outputs=[chatbot, history])

        # --- Project Management ---
        with gr.Tab("Project"):
            project_name = gr.Textbox(label="Project Name", placeholder="MyHuggingFaceApp")
            create_project_button = gr.Button("Create Hugging Face Project")
            project_output = gr.Textbox(label="Output", lines=5)
            file_content = gr.Code(label="File Content", language="python", lines=20)
            file_path = gr.Textbox(label="File Path (relative to project)", placeholder="src/main.py")
            read_button = gr.Button("Read File")
            write_button = gr.Button("Write to File")
            command_input = gr.Textbox(label="Terminal Command", placeholder="pip install -r requirements.txt")
            command_output = gr.Textbox(label="Command Output", lines=5)
            run_command_button = gr.Button("Run Command")
            preview_button = gr.Button("Preview Project")

            create_project_button.click(create_hf_project, inputs=[project_name], outputs=project_output)
            read_button.click(read_file_content, inputs=file_path, outputs=file_content)
            write_button.click(write_to_file, inputs=[file_path, file_content], outputs=project_output)
            run_command_button.click(execute_command, inputs=command_input, outputs=command_output)
            preview_button.click(preview_project, outputs=project_output)

    demo.launch()

if __name__ == "__main__":
    main()