Spaces:
Running
Running
File size: 18,981 Bytes
a98a37e f819cc0 a0a17b8 9cf63c4 a0a17b8 3266cac a0a17b8 b0944ea a0a17b8 b0944ea a0a17b8 b0944ea a0a17b8 b0944ea a0a17b8 b0944ea 20250e3 c6d7c50 a0a17b8 c6d7c50 a0a17b8 c6d7c50 a0a17b8 c6d7c50 9f232dd a0a17b8 9f232dd 9cf63c4 a0a17b8 9f232dd 9cf63c4 9f232dd a0a17b8 9cf63c4 a0a17b8 9f232dd f0a0e00 9f232dd 20250e3 a0a17b8 20250e3 a0a17b8 20250e3 9f232dd 9cf63c4 a0a17b8 9cf63c4 a0a17b8 9cf63c4 9f232dd a0a17b8 f819cc0 9f232dd a0a17b8 9f232dd 097ecdb a0a17b8 9f232dd 8363049 a0a17b8 9f232dd 8363049 a0a17b8 b0944ea a0a17b8 b0944ea a0a17b8 f45aba3 a0a17b8 f45aba3 f0a0e00 f45aba3 a0a17b8 f819cc0 a0a17b8 f45aba3 f0a0e00 f45aba3 a0a17b8 f45aba3 f0a0e00 f45aba3 a0a17b8 f0a0e00 a0a17b8 f0a0e00 f45aba3 a0a17b8 20250e3 f0a0e00 a0a17b8 f0a0e00 f45aba3 a0a17b8 f0a0e00 a0a17b8 f0a0e00 a0a17b8 f0a0e00 a0a17b8 9cf63c4 a0a17b8 9cf63c4 f0a0e00 9f232dd b0944ea f0a0e00 b0944ea a0a17b8 1158227 9f232dd f0a0e00 9f232dd b0944ea 9f232dd b0944ea f0a0e00 b0944ea f0a0e00 b0944ea f0a0e00 b0944ea f0a0e00 b0944ea a0a17b8 b0944ea f0a0e00 b0944ea f0a0e00 b0944ea f0a0e00 b0944ea f0a0e00 b0944ea f0a0e00 a0a17b8 b0944ea a0a17b8 d76e388 b0944ea f0a0e00 b0944ea f0a0e00 b0944ea f0a0e00 b0944ea 20250e3 f0a0e00 b0944ea f0a0e00 b0944ea a0a17b8 b0944ea f0a0e00 b0944ea a0a17b8 b0944ea f0a0e00 b0944ea f0a0e00 b0944ea f0a0e00 b0944ea f0a0e00 b0944ea f0a0e00 b0944ea d76e388 f0a0e00 d76e388 a0a17b8 f0a0e00 a0a17b8 f0a0e00 20250e3 a0a17b8 20250e3 f0a0e00 d76e388 a0a17b8 5e6f07a 9cf63c4 a0a17b8 1158227 a0a17b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
import os
import sys
import subprocess
import base64
import json
from io import StringIO
from typing import Dict, List
import streamlit as st
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
from pylint import lint
# Add your Hugging Face API token here
hf_token = st.secrets["hf_token"]
# Global state to manage communication between Tool Box and Workspace Chat App
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "terminal_history" not in st.session_state:
st.session_state.terminal_history = []
if "workspace_projects" not in st.session_state:
st.session_state.workspace_projects = {}
# Load pre-trained RAG retriever
rag_retriever = pipeline("retrieval-question-answering", model="facebook/rag-token-base")
# Load pre-trained chat model
chat_model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/DialoGPT-medium")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
def process_input(user_input: str) -> str:
# Input pipeline: Tokenize and preprocess user input
input_ids = tokenizer(user_input, return_tensors="pt").input_ids
attention_mask = tokenizer(user_input, return_tensors="pt").attention_mask
# RAG model: Generate response
with torch.no_grad():
output = rag_retriever(input_ids, attention_mask=attention_mask)
response = output.generator_outputs[0].sequences[0]
# Chat model: Refine response
chat_input = tokenizer(response, return_tensors="pt")
chat_input["input_ids"] = chat_input["input_ids"].unsqueeze(0)
chat_input["attention_mask"] = chat_input["attention_mask"].unsqueeze(0)
with torch.no_grad():
chat_output = chat_model(**chat_input)
refined_response = chat_output.sequences[0]
# Output pipeline: Return final response
return refined_response
class AIAgent:
def __init__(self, name: str, description: str, skills: List[str], hf_api=None):
self.name = name
self.description = description
self.skills = skills
self._hf_api = hf_api
self._hf_token = hf_token
@property
def hf_api(self):
if not self._hf_api and self.has_valid_hf_token():
self._hf_api = HfApi(token=self._hf_token)
return self._hf_api
def has_valid_hf_token(self):
return bool(self._hf_token)
async def autonomous_build(self, chat_history: List[str], workspace_projects: Dict[str, str], project_name: str, selected_model: str):
# Continuation of previous methods
summary = "Chat History:\n" + "\n".join(chat_history)
summary += "\n\nWorkspace Projects:\n" + "\n".join(workspace_projects.items())
# Analyze chat history and workspace projects to suggest actions
# Example:
# - Check if the user has requested to create a new file
# - Check if the user has requested to install a package
# - Check if the user has requested to run a command
# - Check if the user has requested to generate code
# - Check if the user has requested to translate code
# - Check if the user has requested to summarize text
# - Check if the user has requested to analyze sentiment
# Generate a response based on the analysis
next_step = "Based on the current state, the next logical step is to implement the main application logic."
# Ensure project folder exists
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(project_path):
os.makedirs(project_path)
# Create requirements.txt if it doesn't exist
requirements_file = os.path.join(project_path, "requirements.txt")
if not os.path.exists(requirements_file):
with open(requirements_file, "w") as f:
f.write("# Add your project's dependencies here\n")
# Create app.py if it doesn't exist
app_file = os.path.join(project_path, "app.py")
if not os.path.exists(app_file):
with open(app_file, "w") as f:
f.write("# Your project's main application logic goes here\n")
# Generate GUI code for app.py if requested
if "create a gui" in summary.lower():
gui_code = generate_code(
"Create a simple GUI for this application", selected_model)
with open(app_file, "a") as f:
f.write(gui_code)
# Run the default build process
build_command = "pip install -r requirements.txt && python app.py"
try:
result = subprocess.run(
build_command, shell=True, capture_output=True, text=True, cwd=project_path)
st.write(f"Build Output:\n{result.stdout}")
if result.stderr:
st.error(f"Build Errors:\n{result.stderr}")
except Exception as e:
st.error(f"Build Error: {e}")
return summary, next_step
def get_built_space_files() -> Dict[str, str]:
# Replace with your logic to gather the files you want to deploy
return {
"app.py": "# Your Streamlit app code here",
"requirements.txt": "streamlit\ntransformers"
# Add other files as needed
}
def save_agent_to_file(agent: AIAgent):
"""Saves the agent's prompt to a file."""
if not os.path.exists(AGENT_DIRECTORY):
os.makedirs(AGENT_DIRECTORY)
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
with open(file_path, "w") as file:
file.write(agent.create_agent_prompt())
st.session_state.available_agents.append(agent.name)
def load_agent_prompt(agent_name: str) -> str:
"""Loads an agent prompt from a file."""
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
if os.path.exists(file_path):
with open(file_path, "r") as file:
agent_prompt = file.read()
return agent_prompt
else:
return None
def create_agent_from_text(name: str, text: str) -> str:
skills = text.split("\n")
agent = AIAgent(name, "AI agent created from text input.", skills)
save_agent_to_file(agent)
return agent.create_agent_prompt()
def chat_interface_with_agent(input_text: str, agent_name: str) -> str:
agent_prompt = load_agent_prompt(agent_name)
if agent_prompt is None:
return f"Agent {agent_name} not found."
model_name = "MaziyarPanahi/Codestral-22B-v0.1-GGUF"
try:
generator = pipeline("text-generation", model=model_name)
generator.tokenizer.pad_token = generator.tokenizer.eos_token
generated_response = generator(
f"{agent_prompt}\n\nUser: {input_text}\nAgent:", max_length=100, do_sample=True, top_k=50)[0]["generated_text"]
return generated_response
except Exception as e:
return f"Error loading model: {e}"
def terminal_interface(command: str, project_name: str = None) -> str:
if project_name:
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(project_path):
return f"Project {project_name} does not exist."
result = subprocess.run(
command, shell=True, capture_output=True, text=True, cwd=project_path)
else:
result = subprocess.run(command, shell=True, capture_output=True, text=True)
return result.stdout
def code_editor_interface(code: str) -> str:
try:
formatted_code = black.format_str(code, mode=black.FileMode())
except black.NothingChanged:
formatted_code = code
result = StringIO()
sys.stdout = result
sys.stderr = result
(pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True)
sys.stdout = sys.__stdout__
sys.stderr = sys.__stderr__
lint_message = pylint_stdout.getvalue() + pylint_stderr.getvalue()
return formatted_code, lint_message
def summarize_text(text: str) -> str:
summarizer = pipeline("summarization")
summary = summarizer(text, max_length=130, min_length=30, do_sample=False)
return summary[0]['summary_text']
def sentiment_analysis(text: str) -> str:
analyzer = pipeline("sentiment-analysis")
result = analyzer(text)
return result[0]['label']
def translate_code(code: str, source_language: str, target_language: str) -> str:
# Use a Hugging Face translation model instead of OpenAI
# Example: English to Spanish
translator = pipeline(
"translation", model="bartowski/Codestral-22B-v0.1-GGUF")
translated_code = translator(code, target_lang=target_language)[0]['translation_text']
return translated_code
def generate_code(code_idea: str, model_name: str) -> str:
"""Generates code using the selected model."""
try:
generator = pipeline('text-generation', model=model_name)
generated_code = generator(code_idea, max_length=1000, num_return_sequences=1)[0]['generated_text']
return generated_code
except Exception as e:
return f"Error generating code: {e}"
def chat_interface(input_text: str) -> str:
"""Handles general chat interactions with the user."""
# Use a Hugging Face chatbot model or your own logic
chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium")
response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text']
return response
def workspace_interface(project_name: str) -> str:
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(project_path):
os.makedirs(project_path)
st.session_state.workspace_projects[project_name] = {'files': []}
return f"Project '{project_name}' created successfully."
else:
return f"Project '{project_name}' already exists."
def add_code_to_workspace(project_name: str, code: str, file_name: str) -> str:
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(project_path):
return f"Project '{project_name}' does not exist."
file_path = os.path.join(project_path, file_name)
with open(file_path, "w") as file:
file.write(code)
st.session_state.workspace_projects[project_name]['files'].append(file_name)
return f"Code added to '{file_name}' in project '{project_name}'."
def create_space_on_hugging_face(api, name, description, public, files, entrypoint="launch.py"):
url = f"{hf_hub_url()}spaces/{name}/prepare-repo"
headers = {"Authorization": f"Bearer {api.access_token}"}
payload = {
"public": public,
"gitignore_template": "web",
"default_branch": "main",
"archived": False,
"files": []
}
for filename, contents in files.items():
data = {
"content": contents,
"path": filename,
"encoding": "utf-8",
"mode": "overwrite"
}
payload["files"].append(data)
response = requests.post(url, json=payload, headers=headers)
response.raise_for_status()
location = response.headers.get("Location")
# wait_for_processing(location, api) # You might need to implement this if it's not already defined
return Repository(name=name, api=api)
# Streamlit App
st.title("AI Agent Creator")
# Sidebar navigation
st.sidebar.title("Navigation")
app_mode = st.sidebar.selectbox(
"Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
if app_mode == "AI Agent Creator":
# AI Agent Creator
st.header("Create an AI Agent from Text")
st.subheader("From Text")
agent_name = st.text_input("Enter agent name:")
text_input = st.text_area("Enter skills (one per line):")
if st.button("Create Agent"):
agent_prompt = create_agent_from_text(agent_name, text_input)
st.success(f"Agent '{agent_name}' created and saved successfully.")
st.session_state.available_agents.append(agent_name)
elif app_mode == "Tool Box":
# Tool Box
st.header("AI-Powered Tools")
# Chat Interface
st.subheader("Chat with CodeCraft")
chat_input = st.text_area("Enter your message:")
if st.button("Send"):
chat_response = chat_interface(chat_input)
st.session_state.chat_history.append((chat_input, chat_response))
st.write(f"CodeCraft: {chat_response}")
# Terminal Interface
st.subheader("Terminal")
terminal_input = st.text_input("Enter a command:")
if st.button("Run"):
terminal_output = terminal_interface(terminal_input)
st.session_state.terminal_history.append(
(terminal_input, terminal_output))
st.code(terminal_output, language="bash")
# Code Editor Interface
st.subheader("Code Editor")
code_editor = st.text_area("Write your code:", height=300)
if st.button("Format & Lint"):
formatted_code, lint_message = code_editor_interface(code_editor)
st.code(formatted_code, language="python")
st.info(lint_message)
# Text Summarization Tool
st.subheader("Summarize Text")
text_to_summarize = st.text_area("Enter text to summarize:")
if st.button("Summarize"):
summary = summarize_text(text_to_summarize)
st.write(f"Summary: {summary}")
# Sentiment Analysis Tool
st.subheader("Sentiment Analysis")
sentiment_text = st.text_area("Enter text for sentiment analysis:")
if st.button("Analyze Sentiment"):
sentiment = sentiment_analysis(sentiment_text)
st.write(f"Sentiment: {sentiment}")
# Text Translation Tool (Code Translation)
st.subheader("Translate Code")
code_to_translate = st.text_area("Enter code to translate:")
source_language = st.text_input("Enter source language (e.g., 'Python'):")
target_language = st.text_input(
"Enter target language (e.g., 'JavaScript'):")
if st.button("Translate Code"):
translated_code = translate_code(
code_to_translate, source_language, target_language)
st.code(translated_code, language=target_language.lower())
# Code Generation
st.subheader("Code Generation")
code_idea = st.text_input("Enter your code idea:")
if st.button("Generate Code"):
generated_code = generate_code(code_idea)
st.code(generated_code, language="python")
elif app_mode == "Workspace Chat App":
# Workspace Chat App
st.header("Workspace Chat App")
# Project Workspace Creation
st.subheader("Create a New Project")
project_name = st.text_input("Enter project name:")
if st.button("Create Project"):
workspace_status = workspace_interface(project_name)
st.success(workspace_status)
# Automatically create requirements.txt and app.py
project_path = os.path.join(PROJECT_ROOT, project_name)
requirements_file = os.path.join(project_path, "requirements.txt")
if not os.path.exists(requirements_file):
with open(requirements_file, "w") as f:
f.write("# Add your project's dependencies here\n")
app_file = os.path.join(project_path, "app.py")
if not os.path.exists(app_file):
with open(app_file, "w") as f:
f.write("# Your project's main application logic goes here\n")
# Add Code to Workspace
st.subheader("Add Code to Workspace")
code_to_add = st.text_area("Enter code to add to workspace:")
file_name = st.text_input("Enter file name (e.g., 'app.py'):")
if st.button("Add Code"):
add_code_status = add_code_to_workspace(
project_name, code_to_add, file_name)
st.session_state.terminal_history.append(
(f"Add Code: {code_to_add}", add_code_status))
st.success(add_code_status)
# Terminal Interface with Project Context
st.subheader("Terminal (Workspace Context)")
terminal_input = st.text_input("Enter a command within the workspace:")
if st.button("Run Command"):
terminal_output = terminal_interface(terminal_input, project_name)
st.session_state.terminal_history.append(
(terminal_input, terminal_output))
st.code(terminal_output, language="bash")
# Chat Interface for Guidance
st.subheader("Chat with CodeCraft for Guidance")
chat_input = st.text_area("Enter your message for guidance:")
if st.button("Get Guidance"):
chat_response = chat_interface(chat_input)
st.session_state.chat_history.append((chat_input, chat_response))
st.write(f"CodeCraft: {chat_response}")
# Display Chat History
st.subheader("Chat History")
for user_input, response in st.session_state.chat_history:
st.write(f"User: {user_input}")
st.write(f"CodeCraft: {response}")
# Display Terminal History
st.subheader("Terminal History")
for command, output in st.session_state.terminal_history:
st.write(f"Command: {command}")
st.code(output, language="bash")
# Display Projects and Files
st.subheader("Workspace Projects")
for project, details in st.session_state.workspace_projects.items():
st.write(f"Project: {project}")
for file in details['files']:
st.write(f" - {file}")
# Chat with AI Agents
st.subheader("Chat with AI Agents")
selected_agent = st.selectbox(
"Select an AI agent", st.session_state.available_agents)
agent_chat_input = st.text_area("Enter your message for the agent:")
if st.button("Send to Agent"):
agent_chat_response = chat_interface_with_agent(
agent_chat_input, selected_agent)
st.session_state.chat_history.append(
(agent_chat_input, agent_chat_response))
st.write(f"{selected_agent}: {agent_chat_response}")
# Code Generation
st.subheader("Code Generation")
code_idea = st.text_input("Enter your code idea:")
# Model Selection Menu
selected_model = st.selectbox(
"Select a code-generative model", AVAILABLE_CODE_GENERATIVE_MODELS)
if st.button("Generate Code"):
generated_code = generate_code(code_idea, selected_model)
st.code(generated_code, language="python")
# Automate Build Process
st.subheader("Automate Build Process")
if st.button("Automate"):
# Load the agent without skills for now
agent = AIAgent(selected_agent, "", [])
summary, next_step = agent.autonomous_build(
st.session_state.chat_history, st.session_state.workspace_projects, project_name, selected_model)
st.write("Autonomous Build Summary:")
st.write(summary)
st.write("Next Step:")
st.write(next_step)
# If everything went well, proceed to deploy the Space
if agent._hf_api and agent.has_valid_hf_token():
agent.deploy_built_space_to_hf()
# Use the hf_token to interact with the Hugging Face API
api = HfApi(token="hf_token") # Function to create a Space on Hugging Face
create_space_on_hugging_face(api, agent.name, agent.description, True, get_built_space_files())
|