Spaces:
Sleeping
Sleeping
File size: 21,521 Bytes
fd59a9f 20ca81b 7611715 a829eeb 7611715 2a95a0f 7611715 2a95a0f 7611715 c4f4f17 48c4537 c4f4f17 48c4537 c4f4f17 7611715 c4f4f17 7611715 48c4537 c4f4f17 48c4537 c4f4f17 48c4537 c4f4f17 7611715 c4f4f17 7611715 c4f4f17 7611715 d379502 7611715 3fd6e5c 7611715 8173591 7611715 8c76f34 6e48490 7611715 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 |
import os
import subprocess
import random
from huggingface_hub import InferenceClient
import gradio as gr
from safe_search import safe_search # Make sure you have this function defined
from i_search import google
from i_search import i_search as i_s
from datetime import datetime
import logging
import json
import nltk # Import nltk for the generate_text_chunked function
from transformers import pipeline # Import pipeline from transformers
nltk.download('punkt') # Download the punkt tokenizer if you haven't already
now = datetime.now()
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
# --- Set up logging ---
logging.basicConfig(
filename="app.log", # Name of the log file
level=logging.INFO, # Set the logging level (INFO, DEBUG, etc.)
format="%(asctime)s - %(levelname)s - %(message)s",
)
agents = [
"WEB_DEV",
"AI_SYSTEM_PROMPT",
"PYTHON_CODE_DEV"
]
############################################
VERBOSE = True
MAX_HISTORY = 5
# MODEL = "gpt-3.5-turbo" # "gpt-4"
PREFIX = """
{date_time_str}
Purpose: {purpose}
Safe Search: {safe_search}
"""
LOG_PROMPT = """
PROMPT: {content}
"""
LOG_RESPONSE = """
RESPONSE: {resp}
"""
COMPRESS_HISTORY_PROMPT = """
You are a helpful AI assistant. Your task is to compress the following history into a summary that is no longer than 512 tokens.
History:
{history}
"""
ACTION_PROMPT = """
You are a helpful AI assistant. You are working on the task: {task}
Your current history is:
{history}
What is your next thought?
thought:
What is your next action?
action:
"""
TASK_PROMPT = """
You are a helpful AI assistant. Your current history is:
{history}
What is the next task?
task:
"""
UNDERSTAND_TEST_RESULTS_PROMPT = """
You are a helpful AI assistant. The test results are:
{test_results}
What do you want to know about the test results?
thought:
"""
def format_prompt(message, history, max_history_turns=2):
prompt = "<s>"
# Keep only the last 'max_history_turns' turns
for user_prompt, bot_response in history[-max_history_turns:]:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def run_gpt(
prompt_template,
stop_tokens,
max_tokens,
purpose,
**prompt_kwargs,
):
seed = random.randint(1,1111111111111111)
logging.info(f"Seed: {seed}") # Log the seed
content = PREFIX.format(
date_time_str=date_time_str,
purpose=purpose,
safe_search=safe_search,
) + prompt_template.format(**prompt_kwargs)
if VERBOSE:
logging.info(LOG_PROMPT.format(content)) # Log the prompt
resp = client.text_generation(content, max_new_tokens=max_new_tokens, stop_sequences=stop_tokens, temperature=0.7, top_p=0.8, repetition_penalty=1.5)
if VERBOSE:
logging.info(LOG_RESPONSE.format([resp])) # Log the response
return resp
def generate(
prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0, model="mistralai/Mixtral-8x7B-Instruct-v0.1"
):
seed = random.randint(1, 1111111111111111)
logging.info(f"Seed: {seed}") # Log the seed
# Set the agent prompt based on agent_name
if agent_name == "WEB_DEV":
agent = "You are a helpful AI assistant. You are a web developer."
elif agent_name == "AI_SYSTEM_PROMPT":
agent = "You are a helpful AI assistant. You are an AI system."
elif agent_name == "PYTHON_CODE_DEV":
agent = "You are a helpful AI assistant. You are a Python code developer."
else:
agent = "You are a helpful AI assistant."
system_prompt = f"{agent} {sys_prompt}".strip()
temperature = max(float(temperature), 1e-2)
top_p = float(top_p)
# Add the system prompt to the beginning of the prompt
formatted_prompt = f"{system_prompt} {prompt}"
# Use 'prompt' here instead of 'message'
formatted_prompt = format_prompt(formatted_prompt, history, max_history_turns=5) # Truncated history
logging.info(f"Formatted Prompt: {formatted_prompt}")
client = InferenceClient(model) if model != "mistralai/Mixtral-8x7B-Instruct-v0.1" else InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
stream = client.text_generation(
formatted_prompt,
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
stream=True,
details=True,
return_full_text=False
)
resp = ""
for response in stream:
resp += response.token.text
yield resp # This allows for streaming the response
if VERBOSE:
logging.info(f"RESPONSE: {resp}") # Log the response directly
def compress_history(purpose, task, history, directory):
resp = run_gpt(
COMPRESS_HISTORY_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=512,
purpose=purpose,
task=task,
history=history,
)
history = "observation: {}\n".format(resp)
return history
def call_search(purpose, task, history, directory, action_input):
logging.info(f"CALLING SEARCH: {action_input}")
try:
if "http" in action_input:
if "<" in action_input:
action_input = action_input.strip("<")
if ">" in action_input:
action_input = action_input.strip(">")
response = i_s(action_input)
#response = google(search_return)
logging.info(f"Search Result: {response}")
history += "observation: search result is: {}\n".format(response)
else:
history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n"
except Exception as e:
history += "observation: {}'\n".format(e)
return "MAIN", None, history, task
def call_main(purpose, task, history, directory, action_input):
logging.info(f"CALLING MAIN: {action_input}")
resp = run_gpt(
ACTION_PROMPT,
stop_tokens=["observation:", "task:", "action:","thought:"],
max_tokens=32000,
purpose=purpose,
task=task,
history=history,
)
lines = resp.strip().strip("\n").split("\n")
for line in lines:
if line == "":
continue
if line.startswith("thought: "):
history += "{}\n".format(line)
logging.info(f"Thought: {line}")
elif line.startswith("action: "):
action_name, action_input = parse_action(line)
logging.info(f"Action: {action_name} - {action_input}")
history += "{}\n".format(line)
if "COMPLETE" in action_name or "COMPLETE" in action_input:
task = "END"
return action_name, action_input, history, task
else:
return action_name, action_input, history, task
else:
history += "{}\n".format(line)
logging.info(f"Other Output: {line}")
#history += "observation: the following command did not produce any useful output: '{}', I need to check the commands syntax, or use a different command\n".format(line)
#return action_name, action_input, history, task
#assert False, "unknown action: {}".format(line)
return "MAIN", None, history, task
def call_set_task(purpose, task, history, directory, action_input):
logging.info(f"CALLING SET_TASK: {action_input}")
task = run_gpt(
TASK_PROMPT,
stop_tokens=[],
max_tokens=64,
purpose=purpose,
task=task,
history=history,
).strip("\n")
history += "observation: task has been updated to: {}\n".format(task)
return "MAIN", None, history, task
def end_fn(purpose, task, history, directory, action_input):
logging.info(f"CALLING END_FN: {action_input}")
task = "END"
return "COMPLETE", "COMPLETE", history, task
NAME_TO_FUNC = {
"MAIN": call_main,
"UPDATE-TASK": call_set_task,
"SEARCH": call_search,
"COMPLETE": end_fn,
}
def run_action(purpose, task, history, directory, action_name, action_input):
logging.info(f"RUNNING ACTION: {action_name} - {action_input}")
try:
if "RESPONSE" in action_name or "COMPLETE" in action_name:
action_name="COMPLETE"
task="END"
return action_name, "COMPLETE", history, task
# compress the history when it is long
if len(history.split("\n")) > MAX_HISTORY:
logging.info("COMPRESSING HISTORY")
history = compress_history(purpose, task, history, directory)
if not action_name in NAME_TO_FUNC:
action_name="MAIN"
if action_name == "" or action_name == None:
action_name="MAIN"
assert action_name in NAME_TO_FUNC
logging.info(f"RUN: {action_name} - {action_input}")
return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
except Exception as e:
history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n"
logging.error(f"Error in run_action: {e}")
return "MAIN", None, history, task
def run(purpose,history):
#print(purpose)
#print(hist)
task=None
directory="./"
if history:
history=str(history).strip("[]")
if not history:
history = ""
action_name = "UPDATE-TASK" if task is None else "MAIN"
action_input = None
while True:
logging.info(f"---")
logging.info(f"Purpose: {purpose}")
logging.info(f"Task: {task}")
logging.info(f"---")
logging.info(f"History: {history}")
logging.info(f"---")
action_name, action_input, history, task = run_action(
purpose,
task,
history,
directory,
action_name,
action_input,
)
yield (history)
#yield ("",[(purpose,history)])
if task == "END":
return (history)
#return ("", [(purpose,history)])
################################################
def format_prompt(message, history, max_history_turns=5):
prompt = "<s>"
# Keep only the last 'max_history_turns' turns
for user_prompt, bot_response in history[-max_history_turns:]:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
agents =[
"WEB_DEV",
"AI_SYSTEM_PROMPT",
"PYTHON_CODE_DEV"
]
def generate(
prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0, model="mistralai/Mixtral-8x7B-Instruct-v0.1"
):
seed = random.randint(1,1111111111111111)
# Correct the line:
if agent_name == "WEB_DEV":
agent = "You are a helpful AI assistant. You are a web developer."
if agent_name == "AI_SYSTEM_PROMPT":
agent = "You are a helpful AI assistant. You are an AI system."
if agent_name == "PYTHON_CODE_DEV":
agent = "You are a helpful AI assistant. You are a Python code developer."
system_prompt = agent
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
# Add the system prompt to the beginning of the prompt
formatted_prompt = f"{system_prompt} {prompt}"
# Use 'prompt' here instead of 'message'
formatted_prompt = format_prompt(formatted_prompt, history, max_history_turns=5) # Truncated history
logging.info(f"Formatted Prompt: {formatted_prompt}")
stream = client.text_generation(formatted_prompt, temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
if VERBOSE:
logging.info(LOG_RESPONSE.format("")) # Log the response
return formatted_prompt # Return resp here
def generate_text_chunked(input_text, model, generation_parameters, max_tokens_to_generate):
"""Generates text in chunks to avoid token limit errors."""
sentences = nltk.sent_tokenize(input_text)
generated_text = []
generator = pipeline('text-generation', model=model)
for sentence in sentences:
# Tokenize the sentence and check if it's within the limit
tokens = generator.tokenizer(sentence).input_ids
if len(tokens) + max_tokens_to_generate <= 32768:
# Generate text for this chunk
response = generator(sentence, max_length=max_tokens_to_generate, **generation_parameters)
generated_text.append(response[0]['generated_text'])
else:
# Handle cases where the sentence is too long
# You could split the sentence further or skip it
print(f"Sentence too long: {sentence}")
return ''.join(generated_text)
formatted_prompt = format_prompt(prompt, history, max_history_turns=5) # Truncated history
logging.info(f"Formatted Prompt: {formatted_prompt}")
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
additional_inputs=[
gr.Dropdown(
label="Agents",
choices=[s for s in agents],
value=agents[0],
interactive=True,
),
gr.Textbox(
label="System Prompt",
max_lines=1,
interactive=True,
),
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=1048*10,
minimum=0,
maximum=1048*10,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
),
]
examples = [
["Help me set up TypeScript configurations and integrate ts-loader in my existing React project.",
"Update Webpack Configurations",
"Install Dependencies",
"Configure Ts-Loader",
"TypeChecking Rules Setup",
"React Specific Settings",
"Compilation Options",
"Test Runner Configuration"],
["Guide me through building a serverless microservice using AWS Lambda and API Gateway, connecting to DynamoDB for storage.",
"Set Up AWS Account",
"Create Lambda Function",
"APIGateway Integration",
"Define DynamoDB Table Scheme",
"Connect Service To DB",
"Add Authentication Layers",
"Monitor Metrics and Set Alarms"],
["Migrate our current monolithic PHP application towards containerized services using Docker and Kubernetes for scalability.",
"Architectural Restructuring Plan",
"Containerisation Process With Docker",
"Service Orchestration With Kubernetes",
"Load Balancing Strategies",
"Persistent Storage Solutions",
"Network Policies Enforcement",
"Continuous Integration / Continuous Delivery"],
["Provide guidance on integrating WebAssembly modules compiled from C++ source files into an ongoing web project.",
"Toolchain Selection (Emscripten vs. LLVM)",
"Setting Up Compiler Environment",
".cpp Source Preparation",
"Module Building Approach",
"Memory Management Considerations",
"Performance Tradeoffs",
"Seamless Web Assembly Embedding"]
]
def parse_action(line):
action_name, action_input = line.strip("action: ").split("=")
action_input = action_input.strip()
return action_name, action_input
def get_file_tree(path):
"""
Recursively explores a directory and returns a nested dictionary representing its file tree.
"""
tree = {}
for item in os.listdir(path):
item_path = os.path.join(path, item)
if os.path.isdir(item_path):
tree[item] = get_file_tree(item_path)
else:
tree[item] = None
return tree
def display_file_tree(tree, indent=0):
"""
Prints a formatted representation of the file tree.
"""
for name, subtree in tree.items():
print(f"{' ' * indent}{name}")
if subtree is not None:
display_file_tree(subtree, indent + 1)
def project_explorer(path):
"""
Displays the file tree of a given path in a Streamlit app.
"""
tree = get_file_tree(path)
tree_str = json.dumps(tree, indent=4) # Convert the tree to a string for display
return tree_str
def chat_app_logic(message, history, purpose, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, model):
# Your existing code here
try:
# Pass 'message' as 'prompt'
response = ''.join(generate(
model=model,
prompt=message, # Use 'prompt' here
history=history,
agent_name=agent_name,
sys_prompt=sys_prompt,
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
))
except TypeError:
# ... (rest of the exception handling)
response_parts = []
for part in generate(
model=model,
prompt=message, # Use 'prompt' here
history=history,
agent_name=agent_name,
sys_prompt=sys_prompt,
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
):
if isinstance(part, str):
response_parts.append(part)
elif isinstance(part, dict) and 'content' in part:
response_parts.append(part['content'])
response = ''.join(response_parts)
history.append((message, response))
return history
history.append((message, response))
return history
def main():
with gr.Blocks() as demo:
gr.Markdown("## FragMixt")
gr.Markdown("### Agents w/ Agents")
# Chat Interface
chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel")
#chatbot.load(examples)
# Input Components
message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!")
purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?")
agent_name = gr.Dropdown(label="Agents", choices=[s for s in agents], value=agents[0], interactive=True)
sys_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True)
temperature = gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs")
max_new_tokens = gr.Slider(label="Max new tokens", value=1048*10, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens")
top_p = gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens")
repetition_penalty = gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
model_input = gr.Textbox(label="Model", value="mistralai/Mixtral-8x7B-Instruct-v0.1", visible=False)
# Button to submit the message
submit_button = gr.Button(value="Send")
# Project Explorer Tab
with gr.Tab("Project Explorer"):
project_path = gr.Textbox(label="Project Path", placeholder="/home/user/app/current_project")
explore_button = gr.Button(value="Explore")
project_output = gr.Textbox(label="File Tree", lines=20)
# Chat App Logic Tab
with gr.Tab("Chat App"):
history = gr.State([])
for example in examples:
gr.Button(value=example[0]).click(lambda: chat_app_logic(example[0], history, purpose, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, model=model_input), outputs=chatbot)
# Connect components to the chat app logic
submit_button.click(chat_app_logic, inputs=[message, history, purpose, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, model_input], outputs=chatbot)
message.submit(chat_app_logic, inputs=[message, history, purpose, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, model_input], outputs=chatbot)
# Connect components to the project explorer
explore_button.click(project_explorer, inputs=project_path, outputs=project_output)
demo.launch(show_api=True)
if __name__ == "__main__":
main() |