File size: 21,536 Bytes
fd59a9f
20ca81b
7611715
 
 
 
 
 
 
 
 
 
a829eeb
7611715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a95a0f
 
7611715
2a95a0f
7611715
 
c4f4f17
 
 
48c4537
c4f4f17
 
 
 
 
 
 
 
 
 
 
 
 
48c4537
c4f4f17
 
 
 
 
 
7611715
c4f4f17
7611715
48c4537
c4f4f17
48c4537
c4f4f17
48c4537
 
 
 
 
 
 
c4f4f17
 
7611715
 
 
c4f4f17
7611715
 
c4f4f17
 
7611715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1bc600
7611715
 
d1bc600
7611715
 
d1bc600
7611715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8173591
7611715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c76f34
6e48490
7611715
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
import os
import subprocess
import random
from huggingface_hub import InferenceClient
import gradio as gr
from safe_search import safe_search  # Make sure you have this function defined
from i_search import google
from i_search import i_search as i_s
from datetime import datetime
import logging
import json
import nltk  # Import nltk for the generate_text_chunked function
from transformers import pipeline  # Import pipeline from transformers

nltk.download('punkt')  # Download the punkt tokenizer if you haven't already

now = datetime.now()
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")

client = InferenceClient(
    "mistralai/Mixtral-8x7B-Instruct-v0.1"
)

# --- Set up logging ---
logging.basicConfig(
    filename="app.log",  # Name of the log file
    level=logging.INFO,  # Set the logging level (INFO, DEBUG, etc.)
    format="%(asctime)s - %(levelname)s - %(message)s",
)

agents = [
    "WEB_DEV",
    "AI_SYSTEM_PROMPT",
    "PYTHON_CODE_DEV"
]
############################################

VERBOSE = True
MAX_HISTORY = 5
# MODEL = "gpt-3.5-turbo"  # "gpt-4"

PREFIX = """
{date_time_str}
Purpose: {purpose}
Safe Search: {safe_search}
"""

LOG_PROMPT = """
PROMPT: {content}
"""

LOG_RESPONSE = """
RESPONSE: {resp}
"""

COMPRESS_HISTORY_PROMPT = """
You are a helpful AI assistant. Your task is to compress the following history into a summary that is no longer than 512 tokens.
History:
{history}
"""

ACTION_PROMPT = """
You are a helpful AI assistant. You are working on the task: {task}
Your current history is:
{history}
What is your next thought?
thought: 
What is your next action?
action: 
"""

TASK_PROMPT = """
You are a helpful AI assistant. Your current history is:
{history}
What is the next task?
task: 
"""

UNDERSTAND_TEST_RESULTS_PROMPT = """
You are a helpful AI assistant. The test results are:
{test_results}
What do you want to know about the test results?
thought: 
"""

def format_prompt(message, history, max_history_turns=2):
  prompt = "<s>"
  # Keep only the last 'max_history_turns' turns
  for user_prompt, bot_response in history[-max_history_turns:]:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt

def run_gpt(
    prompt_template,
    stop_tokens,
    max_tokens,
    purpose,
    **prompt_kwargs,
):
    seed = random.randint(1,1111111111111111)
    logging.info(f"Seed: {seed}")  # Log the seed
    
    content = PREFIX.format(
        date_time_str=date_time_str,
        purpose=purpose,
        safe_search=safe_search,
    ) + prompt_template.format(**prompt_kwargs)
    if VERBOSE:
        logging.info(LOG_PROMPT.format(content))  # Log the prompt 
    resp = client.text_generation(content, max_new_tokens=max_new_tokens, stop_sequences=stop_tokens, temperature=0.7, top_p=0.8, repetition_penalty=1.5)
    if VERBOSE:
        logging.info(LOG_RESPONSE.format([resp]))  # Log the response
    return resp

def generate(
    prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0, model="mistralai/Mixtral-8x7B-Instruct-v0.1"
):
    seed = random.randint(1, 1111111111111111)
    logging.info(f"Seed: {seed}")  # Log the seed

    # Set the agent prompt based on agent_name
    if agent_name == "WEB_DEV":
        agent = "You are a helpful AI assistant. You are a web developer."
    elif agent_name == "AI_SYSTEM_PROMPT":
        agent = "You are a helpful AI assistant. You are an AI system."
    elif agent_name == "PYTHON_CODE_DEV":
        agent = "You are a helpful AI assistant. You are a Python code developer."
    else:
        agent = "You are a helpful AI assistant."

    system_prompt = f"{agent} {sys_prompt}".strip()

    temperature = max(float(temperature), 1e-2)
    top_p = float(top_p)

    # Add the system prompt to the beginning of the prompt
    formatted_prompt = f"{system_prompt} {prompt}"

    # Use 'prompt' here instead of 'message'
    formatted_prompt = format_prompt(formatted_prompt, history, max_history_turns=5)  # Truncated history
    logging.info(f"Formatted Prompt: {formatted_prompt}")

    client = InferenceClient(model) if model != "mistralai/Mixtral-8x7B-Instruct-v0.1" else InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

    stream = client.text_generation(
        formatted_prompt,
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        stream=True,
        details=True,
        return_full_text=False
    )
    resp = ""
    for response in stream:
        resp += response.token.text
        yield resp  # This allows for streaming the response

    if VERBOSE:
        logging.info(f"RESPONSE: {resp}")  # Log the response directly

def compress_history(purpose, task, history, directory):
    resp = run_gpt(
        COMPRESS_HISTORY_PROMPT,
        stop_tokens=["observation:", "task:", "action:", "thought:"],
        max_tokens=512,
        purpose=purpose,
        task=task,
        history=history,
    )
    history = "observation: {}\n".format(resp)
    return history
    
def call_search(purpose, task, history, directory, action_input):
    logging.info(f"CALLING SEARCH: {action_input}")
    try:
        
        if "http" in action_input:
            if "<" in action_input:
                action_input = action_input.strip("<")
            if ">" in action_input:
                action_input = action_input.strip(">")
            
            response = i_s(action_input)
            #response = google(search_return)
            logging.info(f"Search Result: {response}")
            history += "observation: search result is: {}\n".format(response)
        else:
            history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n"
    except Exception as e:
        history += "observation: {}'\n".format(e)
    return "MAIN", None, history, task

def call_main(purpose, task, history, directory, action_input):
    logging.info(f"CALLING MAIN: {action_input}")
    resp = run_gpt(
        ACTION_PROMPT,
        stop_tokens=["observation:", "task:", "action:","thought:"],
        max_tokens=32000,
        purpose=purpose,
        task=task,
        history=history,
    )
    lines = resp.strip().strip("\n").split("\n")
    for line in lines:
        if line == "":
            continue
        if line.startswith("thought: "):
            history += "{}\n".format(line)
            logging.info(f"Thought: {line}")
        elif line.startswith("action: "):
            
            action_name, action_input = parse_action(line)
            logging.info(f"Action: {action_name} - {action_input}")
            history += "{}\n".format(line)
            if "COMPLETE" in action_name or "COMPLETE" in action_input:
                task = "END"
                return action_name, action_input, history, task
            else:
                return action_name, action_input, history, task
        else:
            history += "{}\n".format(line)
            logging.info(f"Other Output: {line}")
            #history += "observation: the following command did not produce any useful output: '{}', I need to check the commands syntax, or use a different command\n".format(line)
            
            #return action_name, action_input, history, task
            #assert False, "unknown action: {}".format(line)
    return "MAIN", None, history, task


def call_set_task(purpose, task, history, directory, action_input):
    logging.info(f"CALLING SET_TASK: {action_input}")
    task = run_gpt(
        TASK_PROMPT,
        stop_tokens=[],
        max_tokens=64,
        purpose=purpose,
        task=task,
        history=history,
    ).strip("\n")
    history += "observation: task has been updated to: {}\n".format(task)
    return "MAIN", None, history, task

def end_fn(purpose, task, history, directory, action_input):
    logging.info(f"CALLING END_FN: {action_input}")
    task = "END"
    return "COMPLETE", "COMPLETE", history, task

NAME_TO_FUNC = {
    "MAIN": call_main,
    "UPDATE-TASK": call_set_task,
    "SEARCH": call_search,
    "COMPLETE": end_fn,

}

def run_action(purpose, task, history, directory, action_name, action_input):
    logging.info(f"RUNNING ACTION: {action_name} - {action_input}")
    try:
        if "RESPONSE" in action_name or "COMPLETE" in action_name:
            action_name="COMPLETE"
            task="END"
            return action_name, "COMPLETE", history, task
    
        # compress the history when it is long
        if len(history.split("\n")) > MAX_HISTORY:
            logging.info("COMPRESSING HISTORY")
            history = compress_history(purpose, task, history, directory)
        if not action_name in NAME_TO_FUNC:
            action_name="MAIN"
        if action_name == "" or action_name == None:
            action_name="MAIN"
        assert action_name in NAME_TO_FUNC
    
        logging.info(f"RUN: {action_name} - {action_input}")
        return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
    except Exception as e:
        history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n"
        logging.error(f"Error in run_action: {e}")
        return "MAIN", None, history, task

def run(purpose,history):
    
    #print(purpose)
    #print(hist)
    task=None
    directory="./"
    if history:
        history=str(history).strip("[]")
    if not history:
        history = ""
    
    action_name = "UPDATE-TASK" if task is None else "MAIN"
    action_input = None
    while True:
        logging.info(f"---")
        logging.info(f"Purpose: {purpose}")
        logging.info(f"Task: {task}")
        logging.info(f"---")
        logging.info(f"History: {history}")
        logging.info(f"---")

        action_name, action_input, history, task = run_action(
            purpose,
            task,
            history,
            directory,
            action_name,
            action_input,
        )
        yield (history)
        #yield ("",[(purpose,history)])
        if task == "END":
            return (history)
            #return ("", [(purpose,history)])



################################################

def format_prompt(message, history, max_history_turns=5):
  prompt = "<s>"
  # Keep only the last 'max_history_turns' turns
  for user_prompt, bot_response in history[-max_history_turns:]:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt
agents =[
    "WEB_DEV",
    "AI_SYSTEM_PROMPT",
    "PYTHON_CODE_DEV"
]
def generate(
    prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0, model="mistralai/Mixtral-8x7B-Instruct-v0.1"
):
    seed = random.randint(1,1111111111111111)

    # Correct the line:
    if agent_name == "WEB_DEV":
        agent = "You are a helpful AI assistant. You are a web developer."
    if agent_name == "AI_SYSTEM_PROMPT":
        agent = "You are a helpful AI assistant. You are an AI system."
    if agent_name == "PYTHON_CODE_DEV":
        agent = "You are a helpful AI assistant. You are a Python code developer."
    system_prompt = agent
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    # Add the system prompt to the beginning of the prompt
    formatted_prompt = f"{system_prompt} {prompt}"

    # Use 'prompt' here instead of 'message'
    formatted_prompt = format_prompt(formatted_prompt, history, max_history_turns=5)  # Truncated history
    logging.info(f"Formatted Prompt: {formatted_prompt}")
    stream = client.text_generation(formatted_prompt, temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, stream=True, details=True, return_full_text=False)
resp = ""
    for response in stream:
        resp += response.token.text
        yield resp  # This allows for streaming the response

    if VERBOSE:
        logging.info(LOG_RESPONSE.format(resp))  # Pass resp to format

def generate_text_chunked(input_text, model, generation_parameters, max_tokens_to_generate):
    """Generates text in chunks to avoid token limit errors."""
    sentences = nltk.sent_tokenize(input_text)
    generated_text = []
    generator = pipeline('text-generation', model=model)

    for sentence in sentences:
        # Tokenize the sentence and check if it's within the limit
        tokens = generator.tokenizer(sentence).input_ids
        if len(tokens) + max_tokens_to_generate <= 32768:
            # Generate text for this chunk
            response = generator(sentence, max_length=max_tokens_to_generate, **generation_parameters)
            generated_text.append(response[0]['generated_text'])
        else:
            # Handle cases where the sentence is too long
            # You could split the sentence further or skip it
            print(f"Sentence too long: {sentence}") 

    return ''.join(generated_text)

    formatted_prompt = format_prompt(prompt, history, max_history_turns=5)  # Truncated history
    logging.info(f"Formatted Prompt: {formatted_prompt}")
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output


additional_inputs=[
    gr.Dropdown(
        label="Agents",
        choices=[s for s in agents],
        value=agents[0],
        interactive=True,
        ),
    gr.Textbox(
        label="System Prompt",
        max_lines=1,
        interactive=True,
    ),
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),

    gr.Slider(
        label="Max new tokens",
        value=1048*10,
        minimum=0,
        maximum=1048*10,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.90,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    ),


]

examples = [
    ["Help me set up TypeScript configurations and integrate ts-loader in my existing React project.",
"Update Webpack Configurations",
"Install Dependencies",
"Configure Ts-Loader",
"TypeChecking Rules Setup",
"React Specific Settings",
"Compilation Options",
"Test Runner Configuration"],

["Guide me through building a serverless microservice using AWS Lambda and API Gateway, connecting to DynamoDB for storage.",
"Set Up AWS Account",
"Create Lambda Function",
"APIGateway Integration",
"Define DynamoDB Table Scheme",
"Connect Service To DB",
"Add Authentication Layers",
"Monitor Metrics and Set Alarms"],

["Migrate our current monolithic PHP application towards containerized services using Docker and Kubernetes for scalability.",
"Architectural Restructuring Plan",
"Containerisation Process With Docker",
"Service Orchestration With Kubernetes",
"Load Balancing Strategies",
"Persistent Storage Solutions",
"Network Policies Enforcement",
"Continuous Integration / Continuous Delivery"],

["Provide guidance on integrating WebAssembly modules compiled from C++ source files into an ongoing web project.",
"Toolchain Selection (Emscripten vs. LLVM)",
"Setting Up Compiler Environment",
".cpp Source Preparation",
"Module Building Approach",
"Memory Management Considerations",
"Performance Tradeoffs",
"Seamless Web Assembly Embedding"]
]

def parse_action(line):
    action_name, action_input = line.strip("action: ").split("=")
    action_input = action_input.strip()
    return action_name, action_input

def get_file_tree(path):
    """
    Recursively explores a directory and returns a nested dictionary representing its file tree.
    """
    tree = {}
    for item in os.listdir(path):
        item_path = os.path.join(path, item)
        if os.path.isdir(item_path):
            tree[item] = get_file_tree(item_path)
        else:
            tree[item] = None
    return tree

def display_file_tree(tree, indent=0):
    """
    Prints a formatted representation of the file tree.
    """
    for name, subtree in tree.items():
        print(f"{'  ' * indent}{name}")
        if subtree is not None:
            display_file_tree(subtree, indent + 1)

def project_explorer(path):
    """
    Displays the file tree of a given path in a Streamlit app.
    """
    tree = get_file_tree(path)
    tree_str = json.dumps(tree, indent=4)  # Convert the tree to a string for display
    return tree_str

def chat_app_logic(message, history, purpose, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, model):
    # Your existing code here
    
    try:
        # Pass 'message' as 'prompt'
        response = ''.join(generate(
            model=model,
            prompt=message,  # Use 'prompt' here
            history=history,
            agent_name=agent_name,
            sys_prompt=sys_prompt,
            temperature=temperature,
            max_new_tokens=max_new_tokens,
            top_p=top_p,
            repetition_penalty=repetition_penalty,
        ))
    except TypeError:
        # ... (rest of the exception handling)

        response_parts = []
        for part in generate(
            model=model,
            prompt=message,  # Use 'prompt' here
            history=history,
            agent_name=agent_name,
            sys_prompt=sys_prompt,
            temperature=temperature,
            max_new_tokens=max_new_tokens,
            top_p=top_p,
            repetition_penalty=repetition_penalty,
        ):
            if isinstance(part, str):
                response_parts.append(part)
            elif isinstance(part, dict) and 'content' in part:
                response_parts.append(part['content'])

        response = ''.join(response_parts)
        history.append((message, response))
        return history

    history.append((message, response))
    return history

def main():
    with gr.Blocks() as demo:
        gr.Markdown("## FragMixt")
        gr.Markdown("### Agents w/ Agents")

        # Chat Interface
        chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel")
        #chatbot.load(examples)

        # Input Components
        message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!")
        purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?")
        agent_name = gr.Dropdown(label="Agents", choices=[s for s in agents], value=agents[0], interactive=True)
        sys_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True)
        temperature = gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs")
        max_new_tokens = gr.Slider(label="Max new tokens", value=1048*10, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens")
        top_p = gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens")
        repetition_penalty = gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
        model_input = gr.Textbox(label="Model", value="mistralai/Mixtral-8x7B-Instruct-v0.1", visible=False)

        # Button to submit the message
        submit_button = gr.Button(value="Send")

        # Project Explorer Tab
        with gr.Tab("Project Explorer"):
            project_path = gr.Textbox(label="Project Path", placeholder="/home/user/app/current_project")
            explore_button = gr.Button(value="Explore")
            project_output = gr.Textbox(label="File Tree", lines=20)

        # Chat App Logic Tab
        with gr.Tab("Chat App"):
            history = gr.State([])
            for example in examples:
                gr.Button(value=example[0]).click(lambda: chat_app_logic(example[0], history, purpose, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, model=model_input), outputs=chatbot)

            # Connect components to the chat app logic
            submit_button.click(chat_app_logic, inputs=[message, history, purpose, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, model_input], outputs=chatbot)
            message.submit(chat_app_logic, inputs=[message, history, purpose, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, model_input], outputs=chatbot)

        # Connect components to the project explorer
        explore_button.click(project_explorer, inputs=project_path, outputs=project_output)

    demo.launch(show_api=True)

if __name__ == "__main__":
    main()