Spaces:
Sleeping
Sleeping
File size: 15,868 Bytes
8ceccef 3e2038a 4567d2b 69d9811 8ceccef 46b0409 3e2038a ed9cf21 45dcb54 ed9cf21 1ac9ba4 ec8233c 7357801 8ceccef 3e2038a ed9cf21 1663f39 ec8233c ed9cf21 8ceccef d922c89 4567d2b f221e91 adada5a f221e91 6ee82fe 45dcb54 8ceccef adada5a 0f41753 adada5a f221e91 fee7b36 f221e91 8ceccef 668f525 fee7b36 668f525 f221e91 fee7b36 f221e91 8ceccef 668f525 fee7b36 668f525 f221e91 fee7b36 f221e91 45dcb54 e24c7c0 f221e91 e24c7c0 f221e91 e24c7c0 8ceccef f221e91 8ceccef f221e91 8ceccef 4567d2b e24c7c0 6ee82fe e173b06 30bb976 f221e91 e24c7c0 e173b06 6ee82fe 8ceccef 45dcb54 9c2fd5e 8ceccef e24c7c0 8ceccef ec8233c 53c3925 45dcb54 4567d2b 30bb976 f221e91 4567d2b 8ceccef 668f525 9c2fd5e 8ceccef 552dbe8 4567d2b 1ac9ba4 4567d2b 45dcb54 4567d2b 1ac9ba4 4567d2b 45dcb54 f221e91 de8a156 f221e91 fee7b36 f52cc9a ec8233c f221e91 de8a156 69d9811 45dcb54 69d9811 f52cc9a 668f525 69d9811 f52cc9a 69d9811 ed9cf21 53c3925 f221e91 ed9cf21 45dcb54 ed9cf21 f52cc9a 668f525 ed9cf21 f52cc9a ed9cf21 8ceccef f221e91 8ceccef 6ee82fe ed9cf21 9c2fd5e 8ceccef f221e91 d922c89 f221e91 d922c89 f221e91 de8a156 f221e91 6ee82fe e24c7c0 9c2fd5e f221e91 45dcb54 f221e91 a5e34df 45dcb54 f221e91 adada5a 45dcb54 1ac9ba4 adada5a 45dcb54 e24c7c0 ed9cf21 ec8233c 6f3d0ef f221e91 6ee82fe f221e91 ec8233c 8ceccef 4567d2b ec8233c 4567d2b 8a49a12 4567d2b 8ceccef f221e91 4567d2b 8ceccef 4567d2b 8ceccef 4567d2b 8ceccef 4567d2b ed9cf21 4567d2b ed9cf21 4567d2b adada5a 8ceccef 6f3d0ef 4567d2b 8ceccef 4567d2b ec8233c 4567d2b 9c2fd5e 4567d2b 1ac9ba4 4567d2b 8ceccef 4567d2b f221e91 49c1e2a 4567d2b f221e91 668f525 f221e91 4567d2b f221e91 4567d2b 668f525 4567d2b 7357801 4567d2b 1ac9ba4 8ceccef 4567d2b d922c89 f221e91 d922c89 6f3d0ef e24c7c0 4567d2b f221e91 e24c7c0 f221e91 4567d2b e24c7c0 4567d2b 8ceccef 843e8ad adada5a f221e91 843e8ad 1663f39 adada5a 8ceccef f221e91 4567d2b 8ceccef 4567d2b 8ceccef f221e91 4567d2b 8ceccef 4567d2b 8ceccef 46e4f7b 8ceccef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
import os
import time
import numpy as np
import gradio as gr
import scipy.ndimage
import cv2
from utils import load_agent
default_n_test_episodes = 10
default_max_steps = 500
default_render_fps = 5
default_epsilon = 0.0
default_paused = True
frame_env_h, frame_env_w = 512, 768
frame_policy_res = 512
# For the dropdown list of policies
policies_folder = "policies"
action_map = {
"CliffWalking-v0": {
0: "up",
1: "right",
2: "down",
3: "left",
},
"FrozenLake-v1": {
0: "left",
1: "down",
2: "right",
3: "up",
},
"Taxi-v3": {
0: "down",
1: "up",
2: "right",
3: "left",
4: "pickup",
5: "dropoff",
},
}
pause_val_map = {
"▶️ Resume": False,
"⏸️ Pause": True,
}
pause_val_map_inv = {v: k for k, v in pause_val_map.items()}
# Global variables to allow changing it on the fly
class RunState:
def __init__(self) -> None:
self.current_policy = None
self.live_render_fps = default_render_fps
self.live_epsilon = default_epsilon
self.live_paused = default_paused
self.live_steps_forward = None
self.should_reset = False
def reset_change(state, policy_fname):
if state.current_policy is not None and state.current_policy != policy_fname:
state.should_reset = True
state.live_paused = default_paused
state.live_render_fps = default_render_fps
state.live_epsilon = default_epsilon
state.live_steps_forward = None
return (
state,
gr.update(value=pause_val_map_inv[not state.live_paused]),
gr.update(interactive=state.live_paused),
)
def reset_click(state):
state.should_reset = state.current_policy is not None
state.live_paused = default_paused
state.live_render_fps = default_render_fps
state.live_epsilon = default_epsilon
state.live_steps_forward = None
return (
state,
gr.update(value=pause_val_map_inv[not state.live_paused]),
gr.update(interactive=state.live_paused),
)
def change_render_fps(state, x):
print("change_render_fps:", x)
state.live_render_fps = x
return state
def change_render_fps_update(state, x):
print("change_render_fps:", x)
state.live_render_fps = x
return state, gr.update(value=x)
def change_epsilon(state, x):
print("change_epsilon:", x)
state.live_epsilon = x
return state
def change_epsilon_update(state, x):
print("change_epsilon:", x)
state.live_epsilon = x
return state, gr.update(value=x)
def change_paused(state, x):
print("change_paused:", x)
state.live_paused = pause_val_map[x]
return (
state,
gr.update(value=pause_val_map_inv[not state.live_paused]),
gr.update(interactive=state.live_paused),
)
def onclick_btn_forward(state):
print("Step forward")
if state.live_steps_forward is None:
state.live_steps_forward = 0
state.live_steps_forward += 1
return state
def run(
localstate: RunState, policy_fname, n_test_episodes, max_steps, render_fps, epsilon
):
localstate.current_policy = policy_fname
localstate.live_render_fps = render_fps
localstate.live_epsilon = epsilon
localstate.live_steps_forward = None
print("=" * 80)
print("Running...")
print(f"- policy_fname: {localstate.current_policy}")
print(f"- n_test_episodes: {n_test_episodes}")
print(f"- max_steps: {max_steps}")
print(f"- render_fps: {localstate.live_render_fps}")
print(f"- epsilon: {localstate.live_steps_forward}")
policy_path = os.path.join(policies_folder, policy_fname)
try:
agent = load_agent(
policy_path, return_agent_env_keys=True, render_mode="rgb_array"
)
except ValueError as e:
print(f"🚫 Error: {e}")
yield localstate, None, None, None, None, None, None, None, None, None, None, "🚫 Please select a valid policy file."
return
agent_key, env_key = agent.__class__.__name__, agent.env_name
env_action_map = action_map.get(env_key)
solved, frame_env, frame_policy = None, None, None
episode, step, state, action, reward, last_reward = (
None,
None,
None,
None,
None,
None,
)
episodes_solved = 0
def ep_str(episode):
return (
f"{episode} / {n_test_episodes} ({(episode) / n_test_episodes * 100:.2f}%)"
)
def step_str(step):
return f"{step + 1}"
for episode in range(n_test_episodes):
time.sleep(0.5)
for step, (episode_hist, solved, frame_env) in enumerate(
agent.generate_episode(
policy=agent.Pi,
max_steps=max_steps,
render=True,
)
):
agent.epsilon_override = localstate.live_epsilon
_, _, last_reward = (
episode_hist[-2] if len(episode_hist) > 1 else (None, None, None)
)
state, action, reward = episode_hist[-1]
curr_policy = agent.Pi[state]
frame_policy_h = frame_policy_res // len(curr_policy)
frame_policy = np.zeros((frame_policy_h, frame_policy_res))
for i, p in enumerate(curr_policy):
frame_policy[
:,
i
* (frame_policy_res // len(curr_policy)) : (i + 1)
* (frame_policy_res // len(curr_policy)),
] = p
frame_policy = scipy.ndimage.gaussian_filter(frame_policy, sigma=1.0)
frame_policy = np.clip(
frame_policy * (1.0 - localstate.live_epsilon)
+ localstate.live_epsilon / len(curr_policy),
0.0,
1.0,
)
label_loc_h, label_loc_w = frame_policy_h // 2, int(
(action + 0.5) * frame_policy_res // len(curr_policy)
)
frame_policy_label_color = 0.0
if frame_policy[label_loc_h, label_loc_w] > 0.5:
frame_policy_label_color = 0.0
else:
frame_policy_label_color = 1.0
frame_policy_label_font = cv2.FONT_HERSHEY_SIMPLEX
frame_policy_label_thicc = 1
action_text_scale, action_text_label_scale = 1.0, 0.6
# These scales are for policies that have length 4
# Longer policies should have smaller scales
action_text_scale *= 4 / len(curr_policy)
action_text_label_scale *= 4 / len(curr_policy)
(label_width, label_height), _ = cv2.getTextSize(
str(action),
frame_policy_label_font,
action_text_scale,
frame_policy_label_thicc,
)
cv2.putText(
frame_policy,
str(action),
(
label_loc_w - label_width // 2,
frame_policy_h // 3 + label_height // 2,
),
frame_policy_label_font,
action_text_scale,
frame_policy_label_color,
frame_policy_label_thicc,
cv2.LINE_AA,
)
if env_action_map:
action_name = env_action_map.get(action, "")
(label_width, label_height), _ = cv2.getTextSize(
action_name,
frame_policy_label_font,
action_text_label_scale,
frame_policy_label_thicc,
)
cv2.putText(
frame_policy,
action_name,
(
int(label_loc_w - label_width / 2),
frame_policy_h - frame_policy_h // 3 + label_height // 2,
),
frame_policy_label_font,
action_text_label_scale,
frame_policy_label_color,
frame_policy_label_thicc,
cv2.LINE_AA,
)
print(
f"Episode: {ep_str(episode + 1)} - step: {step_str(step)} - state: {state} - action: {action} - reward: {reward} (epsilon: {localstate.live_epsilon:.2f}) (frame time: {1 / localstate.live_render_fps:.2f}s)"
)
yield localstate, agent_key, env_key, frame_env, frame_policy, ep_str(
episode + 1
), ep_str(episodes_solved), step_str(
step
), state, action, last_reward, "Running..."
if localstate.live_steps_forward is not None:
if localstate.live_steps_forward > 0:
localstate.live_steps_forward -= 1
if localstate.live_steps_forward == 0:
localstate.live_steps_forward = None
localstate.live_paused = True
else:
time.sleep(1 / localstate.live_render_fps)
while localstate.live_paused and localstate.live_steps_forward is None:
yield localstate, agent_key, env_key, frame_env, frame_policy, ep_str(
episode + 1
), ep_str(episodes_solved), step_str(
step
), state, action, last_reward, "Paused..."
time.sleep(1 / localstate.live_render_fps)
if localstate.should_reset is True:
break
if localstate.should_reset is True:
localstate.should_reset = False
localstate.current_policy = None
yield (
localstate,
None,
None,
np.ones((frame_env_h, frame_env_w, 3)),
np.ones((frame_policy_h, frame_policy_res)),
None,
None,
None,
None,
None,
None,
"Reset...",
)
return
if solved:
episodes_solved += 1
time.sleep(0.5)
localstate.current_policy = None
yield localstate, agent_key, env_key, frame_env, frame_policy, ep_str(
episode + 1
), ep_str(episodes_solved), step_str(step), state, action, last_reward, "Done!"
with gr.Blocks(title="CS581 Demo") as demo:
try:
all_policies = [
file for file in os.listdir(policies_folder) if file.endswith(".npy")
]
all_policies.sort()
except FileNotFoundError:
print("ERROR: No policies folder found!")
all_policies = []
gr.components.HTML(
"<h1>CS581 Final Project Demo - Dynamic Programming & Monte-Carlo RL Methods (<a href='https://github.com/andreicozma1/CS581-Algorithms-Project'>GitHub</a>) (<a href='https://huggingface.co/spaces/acozma/CS581-Algos-Demo'>HF Space</a>)</h1>"
)
localstate = gr.State(RunState())
gr.components.HTML("<h2>Select Configuration:</h2>")
with gr.Row():
input_policy = gr.components.Dropdown(
label="Policy Checkpoint",
choices=all_policies,
value=all_policies[0] if all_policies else "No policies found :(",
)
out_environment = gr.components.Textbox(label="Resolved Environment")
out_agent = gr.components.Textbox(label="Resolved Agent")
with gr.Row():
input_n_test_episodes = gr.components.Slider(
minimum=1,
maximum=1000,
value=default_n_test_episodes,
label="Number of episodes",
)
input_max_steps = gr.components.Slider(
minimum=1,
maximum=1000,
value=default_max_steps,
label="Max steps per episode",
)
with gr.Row():
btn_run = gr.components.Button(
"👀 Select & Load", interactive=bool(all_policies)
)
btn_clear = gr.components.Button("🗑️ Clear", interactive=bool(all_policies))
gr.components.HTML("<h2>Live Visualization & Information:</h2>")
with gr.Row():
with gr.Column():
with gr.Row():
out_episode = gr.components.Textbox(label="Current Episode")
out_step = gr.components.Textbox(label="Current Step")
out_eps_solved = gr.components.Textbox(label="Episodes Solved")
with gr.Row():
out_state = gr.components.Textbox(label="Current State")
out_action = gr.components.Textbox(label="Chosen Action")
out_reward = gr.components.Textbox(label="Reward Received")
out_image_policy = gr.components.Image(
label="Action Sampled vs Policy Distribution for Current State",
type="numpy",
image_mode="RGB",
)
out_image_policy.style(height=200)
with gr.Row():
input_epsilon = gr.components.Slider(
minimum=0,
maximum=1,
value=default_epsilon,
step=1 / 20,
label="Epsilon (0 = greedy, 1 = random)",
)
input_epsilon.change(
change_epsilon,
inputs=[localstate, input_epsilon],
outputs=[localstate],
)
input_epsilon.release(
change_epsilon_update,
inputs=[localstate, input_epsilon],
outputs=[localstate, input_epsilon],
)
input_render_fps = gr.components.Slider(
minimum=1,
maximum=60,
value=default_render_fps,
step=1,
label="Simulation speed (fps)",
)
input_render_fps.change(
change_render_fps,
inputs=[localstate, input_render_fps],
outputs=[localstate],
)
input_render_fps.release(
change_render_fps_update,
inputs=[localstate, input_render_fps],
outputs=[localstate, input_render_fps],
)
out_image_frame = gr.components.Image(
label="Environment",
type="numpy",
image_mode="RGB",
)
out_image_frame.style(height=frame_env_h)
with gr.Row():
btn_pause = gr.components.Button(
pause_val_map_inv[not default_paused], interactive=True
)
btn_forward = gr.components.Button("⏩ Step")
btn_pause.click(
fn=change_paused,
inputs=[localstate, btn_pause],
outputs=[localstate, btn_pause, btn_forward],
)
btn_forward.click(
fn=onclick_btn_forward, inputs=[localstate], outputs=[localstate]
)
out_msg = gr.components.Textbox(
value=""
if all_policies
else "ERROR: No policies found! Please train an agent first or add a policy to the policies folder.",
label="Status Message",
)
input_policy.change(
fn=reset_change,
inputs=[localstate, input_policy],
outputs=[localstate, btn_pause, btn_forward],
)
btn_clear.click(
fn=reset_click,
inputs=[localstate],
outputs=[localstate, btn_pause, btn_forward],
)
btn_run.click(
fn=run,
inputs=[
localstate,
input_policy,
input_n_test_episodes,
input_max_steps,
input_render_fps,
input_epsilon,
],
outputs=[
localstate,
out_agent,
out_environment,
out_image_frame,
out_image_policy,
out_episode,
out_eps_solved,
out_step,
out_state,
out_action,
out_reward,
out_msg,
],
)
demo.queue(concurrency_count=8)
demo.launch()
|