File size: 5,513 Bytes
a297be3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90f10bf
a297be3
 
90f10bf
 
 
 
 
 
 
 
a297be3
 
 
 
 
90f10bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a297be3
 
 
 
 
 
 
90f10bf
 
 
 
 
 
 
 
 
 
 
 
a297be3
 
 
90f10bf
 
a297be3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# import streamlit as st
# import torch
# from transformers import LongformerTokenizer, LongformerForSequenceClassification

# # Load the fine-tuned model and tokenizer
# model_path = "./clinical_longformer"
# tokenizer = LongformerTokenizer.from_pretrained(model_path)
# model = LongformerForSequenceClassification.from_pretrained(model_path)
# model.eval()  # Set the model to evaluation mode

# # ICD-9 code columns used during training
# icd9_columns = [
#     '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
#     '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
#     '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
#     '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
#     '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
#     '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
# ]

# # Function for making predictions
# def predict_icd9(texts, tokenizer, model, threshold=0.5):
#     inputs = tokenizer(
#         texts,
#         padding="max_length",
#         truncation=True,
#         max_length=512,
#         return_tensors="pt"
#     )
    
#     with torch.no_grad():
#         outputs = model(
#             input_ids=inputs["input_ids"],
#             attention_mask=inputs["attention_mask"]
#         )
#         logits = outputs.logits
#         probabilities = torch.sigmoid(logits)
#         predictions = (probabilities > threshold).int()
    
#     predicted_icd9 = []
#     for pred in predictions:
#         codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
#         predicted_icd9.append(codes)
    
#     return predicted_icd9

# # Streamlit UI
# st.title("ICD-9 Code Prediction")
# st.sidebar.header("Model Options")
# model_option = st.sidebar.selectbox("Select Model", [ "ClinicalLongformer"])
# threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)

# st.write("### Enter Medical Summary")
# input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")

# if st.button("Predict"):
#     if input_text.strip():
#         predictions = predict_icd9([input_text], tokenizer, model, threshold)
#         st.write("### Predicted ICD-9 Codes")
#         for code in predictions[0]:
#             st.write(f"- {code}")
#     else:
#         st.error("Please enter a medical summary.")

import torch
import pandas as pd
import streamlit as st
from transformers import LongformerTokenizer, LongformerForSequenceClassification

# Load the fine-tuned model and tokenizer
model_path = "./clinical_longformer"
tokenizer = LongformerTokenizer.from_pretrained(model_path)
model = LongformerForSequenceClassification.from_pretrained(model_path)
model.eval()  # Set the model to evaluation mode

# Load the ICD-9 descriptions from CSV into a dictionary
icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv")  # Adjust the path to your CSV file
icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str)  # Ensure ICD9_CODE is string type for matching
icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE']))  # Remove decimals in ICD9 code for matching

# ICD-9 code columns used during training
icd9_columns = [
    '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
    '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
    '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
    '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
    '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
    '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
]

# Function for making predictions
def predict_icd9(texts, tokenizer, model, threshold=0.5):
    inputs = tokenizer(
        texts,
        padding="max_length",
        truncation=True,
        max_length=512,
        return_tensors="pt"
    )
    
    with torch.no_grad():
        outputs = model(
            input_ids=inputs["input_ids"],
            attention_mask=inputs["attention_mask"]
        )
        logits = outputs.logits
        probabilities = torch.sigmoid(logits)
        predictions = (probabilities > threshold).int()
    
    predicted_icd9 = []
    for pred in predictions:
        codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
        predicted_icd9.append(codes)
    
    # Fetch descriptions for the predicted ICD-9 codes from the pre-loaded descriptions
    predictions_with_desc = []
    for codes in predicted_icd9:
        code_with_desc = [(code, icd9_descriptions.get(code.replace('.', ''), "Description not found")) for code in codes]
        predictions_with_desc.append(code_with_desc)
    
    return predictions_with_desc

# Streamlit UI
st.title("ICD-9 Code Prediction")
st.sidebar.header("Model Options")
threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)

st.write("### Enter Medical Summary")
input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")

if st.button("Predict"):
    if input_text.strip():
        predictions = predict_icd9([input_text], tokenizer, model, threshold)
        st.write("### Predicted ICD-9 Codes and Descriptions")
        for code, description in predictions[0]:
            st.write(f"- {code}: {description}")
    else:
        st.error("Please enter a medical summary.")