Spaces:
Sleeping
Sleeping
# import streamlit as st | |
# import torch | |
# from transformers import LongformerTokenizer, LongformerForSequenceClassification | |
# # Load the fine-tuned model and tokenizer | |
# model_path = "./clinical_longformer" | |
# tokenizer = LongformerTokenizer.from_pretrained(model_path) | |
# model = LongformerForSequenceClassification.from_pretrained(model_path) | |
# model.eval() # Set the model to evaluation mode | |
# # ICD-9 code columns used during training | |
# icd9_columns = [ | |
# '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9', | |
# '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61', | |
# '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0', | |
# '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0', | |
# '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15', | |
# '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61' | |
# ] | |
# # Function for making predictions | |
# def predict_icd9(texts, tokenizer, model, threshold=0.5): | |
# inputs = tokenizer( | |
# texts, | |
# padding="max_length", | |
# truncation=True, | |
# max_length=512, | |
# return_tensors="pt" | |
# ) | |
# with torch.no_grad(): | |
# outputs = model( | |
# input_ids=inputs["input_ids"], | |
# attention_mask=inputs["attention_mask"] | |
# ) | |
# logits = outputs.logits | |
# probabilities = torch.sigmoid(logits) | |
# predictions = (probabilities > threshold).int() | |
# predicted_icd9 = [] | |
# for pred in predictions: | |
# codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1] | |
# predicted_icd9.append(codes) | |
# return predicted_icd9 | |
# # Streamlit UI | |
# st.title("ICD-9 Code Prediction") | |
# st.sidebar.header("Model Options") | |
# model_option = st.sidebar.selectbox("Select Model", [ "ClinicalLongformer"]) | |
# threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01) | |
# st.write("### Enter Medical Summary") | |
# input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...") | |
# if st.button("Predict"): | |
# if input_text.strip(): | |
# predictions = predict_icd9([input_text], tokenizer, model, threshold) | |
# st.write("### Predicted ICD-9 Codes") | |
# for code in predictions[0]: | |
# st.write(f"- {code}") | |
# else: | |
# st.error("Please enter a medical summary.") | |
import torch | |
import pandas as pd | |
import streamlit as st | |
from transformers import LongformerTokenizer, LongformerForSequenceClassification | |
# Load the fine-tuned model and tokenizer | |
model_path = "./clinical_longformer" | |
tokenizer = LongformerTokenizer.from_pretrained(model_path) | |
model = LongformerForSequenceClassification.from_pretrained(model_path) | |
model.eval() # Set the model to evaluation mode | |
# Load the ICD-9 descriptions from CSV into a dictionary | |
icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv") # Adjust the path to your CSV file | |
icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type for matching | |
icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals in ICD9 code for matching | |
# ICD-9 code columns used during training | |
icd9_columns = [ | |
'038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9', | |
'287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61', | |
'39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0', | |
'486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0', | |
'88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15', | |
'995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61' | |
] | |
# Function for making predictions | |
def predict_icd9(texts, tokenizer, model, threshold=0.5): | |
inputs = tokenizer( | |
texts, | |
padding="max_length", | |
truncation=True, | |
max_length=512, | |
return_tensors="pt" | |
) | |
with torch.no_grad(): | |
outputs = model( | |
input_ids=inputs["input_ids"], | |
attention_mask=inputs["attention_mask"] | |
) | |
logits = outputs.logits | |
probabilities = torch.sigmoid(logits) | |
predictions = (probabilities > threshold).int() | |
predicted_icd9 = [] | |
for pred in predictions: | |
codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1] | |
predicted_icd9.append(codes) | |
# Fetch descriptions for the predicted ICD-9 codes from the pre-loaded descriptions | |
predictions_with_desc = [] | |
for codes in predicted_icd9: | |
code_with_desc = [(code, icd9_descriptions.get(code.replace('.', ''), "Description not found")) for code in codes] | |
predictions_with_desc.append(code_with_desc) | |
return predictions_with_desc | |
# Streamlit UI | |
st.title("ICD-9 Code Prediction") | |
st.sidebar.header("Model Options") | |
threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01) | |
st.write("### Enter Medical Summary") | |
input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...") | |
if st.button("Predict"): | |
if input_text.strip(): | |
predictions = predict_icd9([input_text], tokenizer, model, threshold) | |
st.write("### Predicted ICD-9 Codes and Descriptions") | |
for code, description in predictions[0]: | |
st.write(f"- {code}: {description}") | |
else: | |
st.error("Please enter a medical summary.") | |