Spaces:
Sleeping
Sleeping
File size: 15,114 Bytes
469c254 2ddd46f 0baf4d0 dbdcde9 f184bba 0baf4d0 22d148d 0baf4d0 22d148d f184bba 0baf4d0 f184bba 2ddd46f 0baf4d0 dbdcde9 0baf4d0 f184bba 2ddd46f 0baf4d0 22d148d f184bba 2ddd46f f184bba 2ddd46f f184bba 2ddd46f 22d148d f184bba dbdcde9 f184bba 2ddd46f dbdcde9 22d148d f184bba 0baf4d0 f184bba dbdcde9 2ddd46f 22d148d f184bba dbdcde9 f184bba 22d148d f184bba 22d148d f184bba 2ddd46f 22d148d f184bba 2ddd46f 22d148d 2ddd46f 22d148d f184bba 2ddd46f 22d148d 2ddd46f 0baf4d0 f184bba 2ddd46f 0baf4d0 f184bba 2ddd46f 22d148d 2ddd46f 0baf4d0 f184bba 2ddd46f 22d148d 2ddd46f f184bba 0baf4d0 f184bba 22d148d 2ddd46f 22d148d 0baf4d0 f184bba 0baf4d0 2ddd46f dbdcde9 2ddd46f f184bba 22d148d 2ddd46f 0baf4d0 f184bba 0baf4d0 dbdcde9 2ddd46f 22d148d 0baf4d0 f184bba dbdcde9 0baf4d0 2ddd46f 22d148d 2ddd46f dbdcde9 f184bba 2ddd46f dbdcde9 2ddd46f 0baf4d0 f184bba 0baf4d0 2ddd46f 0baf4d0 f184bba 0baf4d0 22d148d 2ddd46f 22d148d f184bba 0baf4d0 2ddd46f dbdcde9 22d148d f184bba 22d148d f184bba 22d148d f184bba 22d148d dbdcde9 22d148d f184bba 22d148d 2ddd46f dbdcde9 22d148d f184bba 2ddd46f 22d148d f184bba 22d148d 2ddd46f 0baf4d0 f184bba 0baf4d0 2ddd46f 0baf4d0 dbdcde9 2ddd46f 0baf4d0 469c254 f184bba 469c254 22d148d 469c254 22d148d dbdcde9 f184bba 22d148d 469c254 2ddd46f 0baf4d0 2ddd46f 469c254 f184bba 7bb7bdc 469c254 f184bba dbdcde9 469c254 22d148d 469c254 f184bba 469c254 2ddd46f 469c254 2ddd46f f184bba 22d148d f184bba dbdcde9 22d148d 0baf4d0 7bb7bdc f184bba dbdcde9 f184bba 2ddd46f 0baf4d0 f184bba 2ddd46f 7bb7bdc f184bba 0baf4d0 f184bba 2ddd46f 22d148d f184bba 7bb7bdc 0baf4d0 f184bba 22d148d dbdcde9 2ddd46f dbdcde9 f184bba 22d148d f184bba 22d148d 0baf4d0 dbdcde9 f184bba 0baf4d0 22d148d f184bba 22d148d f184bba 22d148d f184bba dbdcde9 22d148d dbdcde9 2ddd46f 22d148d dbdcde9 2ddd46f 22d148d f184bba 22d148d dbdcde9 f184bba dbdcde9 469c254 f184bba 22d148d 0baf4d0 dbdcde9 0baf4d0 469c254 7bb7bdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
import streamlit as st
import torch
import pandas as pd
import numpy as np
from pathlib import Path
import sys
import plotly.express as px
import plotly.graph_objects as go
from transformers import BertTokenizer
import nltk
# Download required NLTK data
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
try:
nltk.data.find('corpora/stopwords')
except LookupError:
nltk.download('stopwords')
try:
nltk.data.find('tokenizers/punkt_tab')
except LookupError:
nltk.download('punkt_tab')
try:
nltk.data.find('corpora/wordnet')
except LookupError:
nltk.download('wordnet')
# Add project root to Python path
project_root = Path(__file__).parent.parent
sys.path.append(str(project_root))
from src.models.hybrid_model import HybridFakeNewsDetector
from src.config.config import *
from src.data.preprocessor import TextPreprocessor
# Custom CSS for streamlined styling with sidebar
st.markdown("""
<style>
/* Import Google Fonts */
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800&display=swap');
/* Global Styles */
* {
margin: 0;
padding: 0;
box-sizing: border-box;
}
.stApp {
font-family: 'Inter', sans-serif;
background: #f8fafc;
min-height: 100vh;
color: #1a202c;
}
/* Ensure sidebar is visible */
#MainMenu {visibility: visible;}
footer {visibility: hidden;}
.stDeployButton {display: none;}
header {visibility: hidden;}
.stApp > header {visibility: hidden;}
/* Container */
.container {
max-width: 1200px;
margin: 0 auto;
padding: 1rem;
}
/* Header */
.header {
padding: 1rem 0;
text-align: center;
}
.header-title {
font-size: 2rem;
font-weight: 800;
color: #1a202c;
display: inline-flex;
align-items: center;
gap: 0.5rem;
}
/* Hero Section */
.hero {
display: flex;
align-items: center;
gap: 2rem;
margin-bottom: 2rem;
}
.hero-left {
flex: 1;
padding: 1rem;
}
.hero-right {
flex: 1;
display: flex;
align-items: center;
justify-content: center;
}
.hero-right img {
max-width: 100%;
height: auto;
border-radius: 8px;
}
.hero-title {
font-size: 2.5rem;
font-weight: 700;
color: #1a202c;
margin-bottom: 0.5rem;
}
.hero-text {
font-size: 1rem;
color: #4a5568;
line-height: 1.5;
max-width: 450px;
}
/* About Section */
.about-section {
margin-bottom: 2rem;
text-align: center;
}
.about-title {
font-size: 1.8rem;
font-weight: 600;
color: #1a202c;
margin-bottom: 0.5rem;
}
.about-text {
font-size: 1rem;
color: #4a5568;
line-height: 1.5;
max-width: 600px;
margin: 0 auto;
}
/* Input Section */
.input-container {
max-width: 800px;
margin: 0 auto;
}
.stTextArea > div > div > textarea {
border-radius: 8px !important;
border: 1px solid #d1d5db !important;
padding: 1rem !important;
font-size: 1rem !important;
font-family: 'Inter', sans-serif !important;
background: #ffffff !important;
min-height: 150px !important;
transition: all 0.2s ease !important;
}
.stTextArea > div > div > textarea:focus {
border-color: #6366f1 !important;
box-shadow: 0 0 0 2px rgba(99, 102, 241, 0.1) !important;
outline: none !important;
}
.stTextArea > div > div > textarea::placeholder {
color: #9ca3af !important;
}
/* Button Styling */
.stButton > button {
background: #6366f1 !important;
color: white !important;
border-radius: 8px !important;
padding: 0.75rem 2rem !important;
font-size: 1rem !important;
font-weight: 600 !important;
font-family: 'Inter', sans-serif !important;
transition: all 0.2s ease !important;
border: none !important;
width: 100% !important;
}
.stButton > button:hover {
background: #4f46e5 !important;
transform: translateY(-1px) !important;
}
/* Results Section */
.results-container {
margin-top: 1rem;
padding: 1rem;
border-radius: 8px;
}
.result-card {
padding: 1rem;
border-radius: 8px;
border-left: 4px solid transparent;
margin-bottom: 1rem;
}
.fake-news {
background: #fef2f2;
border-left-color: #ef4444;
}
.real-news {
background: #ecfdf5;
border-left-color: #10b981;
}
.prediction-badge {
font-weight: 600;
font-size: 1rem;
margin-bottom: 0.5rem;
display: flex;
align-items: center;
gap: 0.5rem;
}
.confidence-score {
font-weight: 600;
margin-left: auto;
font-size: 1rem;
}
/* Chart Containers */
.chart-container {
padding: 1rem;
border-radius: 8px;
margin: 1rem 0;
}
/* Footer */
.footer {
margin-top: 2rem;
padding: 1rem 0;
text-align: center;
border-top: 1px solid #e5e7eb;
}
/* Sidebar Styling */
.stSidebar {
background: #ffffff;
border-right: 1px solid #e5e7eb;
}
.stSidebar .sidebar-content {
padding: 1rem;
}
</style>
""", unsafe_allow_html=True)
@st.cache_resource
def load_model_and_tokenizer():
"""Load the model and tokenizer (cached)."""
model = HybridFakeNewsDetector(
bert_model_name=BERT_MODEL_NAME,
lstm_hidden_size=LSTM_HIDDEN_SIZE,
lstm_num_layers=LSTM_NUM_LAYERS,
dropout_rate=DROPOUT_RATE
)
state_dict = torch.load(SAVED_MODELS_DIR / "final_model.pt", map_location=torch.device('cpu'))
model_state_dict = model.state_dict()
filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict}
model.load_state_dict(filtered_state_dict, strict=False)
model.eval()
tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME)
return model, tokenizer
@st.cache_resource
def get_preprocessor():
"""Get the text preprocessor (cached)."""
return TextPreprocessor()
def predict_news(text):
"""Predict if the given news is fake or real."""
model, tokenizer = load_model_and_tokenizer()
preprocessor = get_preprocessor()
processed_text = preprocessor.preprocess_text(text)
encoding = tokenizer.encode_plus(
processed_text,
add_special_tokens=True,
max_length=MAX_SEQUENCE_LENGTH,
padding='max_length',
truncation=True,
return_attention_mask=True,
return_tensors='pt'
)
with torch.no_grad():
outputs = model(
encoding['input_ids'],
encoding['attention_mask']
)
probabilities = torch.softmax(outputs['logits'], dim=1)
prediction = torch.argmax(outputs['logits'], dim=1)
attention_weights = outputs['attention_weights']
attention_weights_np = attention_weights[0].cpu().numpy()
return {
'prediction': prediction.item(),
'label': 'FAKE' if prediction.item() == 1 else 'REAL',
'confidence': torch.max(probabilities, dim=1)[0].item(),
'probabilities': {
'REAL': probabilities[0][0].item(),
'FAKE': probabilities[0][1].item()
},
'attention_weights': attention_weights_np
}
def plot_confidence(probabilities):
"""Plot prediction confidence with simplified styling."""
fig = go.Figure(data=[
go.Bar(
x=list(probabilities.keys()),
y=list(probabilities.values()),
text=[f'{p:.1%}' for p in probabilities.values()],
textposition='auto',
marker=dict(
color=['#10b981', '#ef4444'],
line=dict(color='#ffffff', width=1),
),
)
])
fig.update_layout(
title={'text': 'Prediction Confidence', 'x': 0.5, 'xanchor': 'center', 'font': {'size': 18}},
xaxis=dict(title='Classification', titlefont={'size': 12}, tickfont={'size': 10}),
yaxis=dict(title='Probability', range=[0, 1], tickformat='.0%', titlefont={'size': 12}, tickfont={'size': 10}),
template='plotly_white',
height=300,
margin=dict(t=60, b=60)
)
return fig
def plot_attention(text, attention_weights):
"""Plot attention weights with simplified styling."""
tokens = text.split()[:20]
attention_weights = attention_weights[:len(tokens)]
if isinstance(attention_weights, (list, np.ndarray)):
attention_weights = np.array(attention_weights).flatten()
normalized_weights = attention_weights / max(attention_weights) if max(attention_weights) > 0 else attention_weights
colors = [f'rgba(99, 102, 241, {0.4 + 0.6 * float(w)})' for w in normalized_weights]
fig = go.Figure(data=[
go.Bar(
x=tokens,
y=attention_weights,
text=[f'{float(w):.3f}' for w in attention_weights],
textposition='auto',
marker=dict(color=colors),
)
])
fig.update_layout(
title={'text': 'Attention Weights', 'x': 0.5, 'xanchor': 'center', 'font': {'size': 18}},
xaxis=dict(title='Words', tickangle=45, titlefont={'size': 12}, tickfont={'size': 10}),
yaxis=dict(title='Attention Score', titlefont={'size': 12}, tickfont={'size': 10}),
template='plotly_white',
height=350,
margin=dict(t=60, b=80)
)
return fig
def main():
# Sidebar
with st.sidebar:
st.markdown("## TruthCheck Menu")
st.markdown("Navigate through the options below:")
st.button("Home", disabled=True)
st.button("Analyze News", key="nav_analyze")
st.button("About", key="nav_about")
st.markdown("---")
st.markdown("**Contact**")
st.markdown("π§ [email protected]")
# Header
st.markdown("""
<div class="header">
<div class="container">
<h1 class="header-title">π‘οΈ TruthCheck</h1>
</div>
</div>
""", unsafe_allow_html=True)
# Hero Section
st.markdown("""
<div class="container">
<div class="hero">
<div class="hero-left">
<h2 class="hero-title">Instant Fake News Detection</h2>
<p class="hero-text">
Verify news articles with our AI-powered tool, driven by BERT and BiLSTM for fast and accurate authenticity analysis.
</p>
</div>
<div class="hero-right">
<img src="hero.png" alt="TruthCheck Illustration">
</div>
</div>
</div>
""", unsafe_allow_html=True)
# About Section
st.markdown("""
<div class="container">
<div class="about-section">
<h2 class="about-title">About TruthCheck</h2>
<p class="about-text">
TruthCheck uses a hybrid BERT-BiLSTM model to detect fake news with high accuracy. Paste an article below for instant analysis.
</p>
</div>
</div>
""", unsafe_allow_html=True)
# Input Section
st.markdown('<div class="container"><div class="input-container">', unsafe_allow_html=True)
news_text = st.text_area(
"Analyze a News Article",
height=150,
placeholder="Paste your news article here for instant AI analysis...",
key="news_input"
)
st.markdown('</div>', unsafe_allow_html=True)
# Analyze Button
st.markdown('<div class="container">', unsafe_allow_html=True)
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
analyze_button = st.button("π Analyze Now", key="analyze_button")
st.markdown('</div>', unsafe_allow_html=True)
if analyze_button:
if news_text and len(news_text.strip()) > 10:
with st.spinner("Analyzing article..."):
try:
result = predict_news(news_text)
st.markdown('<div class="container"><div class="results-container">', unsafe_allow_html=True)
# Prediction Result
col1, col2 = st.columns([1, 1], gap="medium")
with col1:
if result['label'] == 'FAKE':
st.markdown(f'''
<div class="result-card fake-news">
<div class="prediction-badge">π¨ Fake News Detected <span class="confidence-score">{result["confidence"]:.1%}</span></div>
<p>Our AI has identified this content as likely misinformation based on linguistic patterns and content analysis.</p>
</div>
''', unsafe_allow_html=True)
else:
st.markdown(f'''
<div class="result-card real-news">
<div class="prediction-badge">β
Authentic News <span class="confidence-score">{result["confidence"]:.1%}</span></div>
<p>This content appears to be legitimate based on professional writing style and factual consistency.</p>
</div>
''', unsafe_allow_html=True)
with col2:
st.markdown('<div class="chart-container">', unsafe_allow_html=True)
st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True)
st.markdown('</div>', unsafe_allow_html=True)
# Attention Analysis
st.markdown('<div class="chart-container">', unsafe_allow_html=True)
st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
st.markdown('</div></div></div>', unsafe_allow_html=True)
except Exception as e:
st.markdown('<div class="container">', unsafe_allow_html=True)
st.error(f"Error: {str(e)}. Please try again or contact support.")
st.markdown('</div>', unsafe_allow_html=True)
else:
st.markdown('<div class="container">', unsafe_allow_html=True)
st.error("Please enter a news article (at least 10 words) for analysis.")
st.markdown('</div>', unsafe_allow_html=True)
# Footer
st.markdown("""
<div class="footer">
<p style="text-align: center; font-weight: 600; font-size: 16px;">π» Developed with β€οΈ using Streamlit | Β© 2025</p>
</div>
""", unsafe_allow_html=True)
if __name__ == "__main__":
main() |